|
|
|
|
Changelog for python3-scikit-learn-0.18.1-2.17.x86_64.rpm :
Sun Jun 11 14:00:00 2017 toddrme2178AATTgmail.com - Implement single-spec version - Update source URL - Update to version 0.18.1 * Large number of changes. See: https://github.com/scikit-learn/scikit-learn/blob/0.18.1/doc/whats_new.rst Mon Jan 11 13:00:00 2016 toddrme2178AATTgmail.com - Switch to proper package name: python-scikit-learn Fri Nov 20 13:00:00 2015 Angelos Tzotsos - Update to version 0.17
Thu Oct 24 14:00:00 2013 toddrme2178AATTgmail.com - Update to version 14.1 * Minor bugfixes - Update to version 14.0 * Changelog - Missing values with sparse and dense matrices can be imputed with the transformer :class:`preprocessing.Imputer` by `Nicolas Trésegnie`_. - The core implementation of decisions trees has been rewritten from scratch, allowing for faster tree induction and lower memory consumption in all tree-based estimators. By `Gilles Louppe`_. - Added :class:`ensemble.AdaBoostClassifier` and :class:`ensemble.AdaBoostRegressor`, by `Noel Dawe`_ and `Gilles Louppe`_. See the :ref:`AdaBoost ` section of the user guide for details and examples. - Added :class:`grid_search.RandomizedSearchCV` and :class:`grid_search.ParameterSampler` for randomized hyperparameter optimization. By `Andreas Müller`_. - Added :ref:`biclustering ` algorithms (:class:`sklearn.cluster.bicluster.SpectralCoclustering` and :class:`sklearn.cluster.bicluster.SpectralBiclustering`), data generation methods (:func:`sklearn.datasets.make_biclusters` and :func:`sklearn.datasets.make_checkerboard`), and scoring metrics (:func:`sklearn.metrics.consensus_score`). By `Kemal Eren`_. - Added :ref:`Restricted Boltzmann Machines` (:class:`neural_network.BernoulliRBM`). By `Yann Dauphin`_. - Python 3 support by `Justin Vincent`_, `Lars Buitinck`_, `Subhodeep Moitra`_ and `Olivier Grisel`_. All tests now pass under Python 3.3. - Ability to pass one penalty (alpha value) per target in :class:`linear_model.Ridge`, by AATTeickenberg and `Mathieu Blondel`_. - Fixed :mod:`sklearn.linear_model.stochastic_gradient.py` L2 regularization issue (minor practical significants). By `Norbert Crombach`_ and `Mathieu Blondel`_ . - Added an interactive version of `Andreas Müller`_\'s `Machine Learning Cheat Sheet (for scikit-learn) `_ to the documentation. See :ref:`Choosing the right estimator `. By `Jaques Grobler`_. - :class:`grid_search.GridSearchCV` and :func:`cross_validation.cross_val_score` now support the use of advanced scoring function such as area under the ROC curve and f-beta scores. See :ref:`scoring_parameter` for details. By `Andreas Müller`_ and `Lars Buitinck`_. Passing a function from :mod:`sklearn.metrics` as ``score_func`` is deprecated. - Multi-label classification output is now supported by :func:`metrics.accuracy_score`, :func:`metrics.zero_one_loss`, :func:`metrics.f1_score`, :func:`metrics.fbeta_score`, :func:`metrics.classification_report`, :func:`metrics.precision_score` and :func:`metrics.recall_score` by `Arnaud Joly`_. - Two new metrics :func:`metrics.hamming_loss` and :func:`metrics.jaccard_similarity_score` are added with multi-label support by `Arnaud Joly`_. - Speed and memory usage improvements in :class:`feature_extraction.text.CountVectorizer` and :class:`feature_extraction.text.TfidfVectorizer`, by Jochen Wersdörfer and Roman Sinayev. - The ``min_df`` parameter in :class:`feature_extraction.text.CountVectorizer` and :class:`feature_extraction.text.TfidfVectorizer`, which used to be 2, has been reset to 1 to avoid unpleasant surprises (empty vocabularies) for novice users who try it out on tiny document collections. A value of at least 2 is still recommended for practical use. - :class:`svm.LinearSVC`, :class:`linear_model.SGDClassifier` and :class:`linear_model.SGDRegressor` now have a ``sparsify`` method that converts their ``coef_`` into a sparse matrix, meaning stored models trained using these estimators can be made much more compact. - :class:`linear_model.SGDClassifier` now produces multiclass probability estimates when trained under log loss or modified Huber loss. - Hyperlinks to documentation in example code on the website by `Martin Luessi`_. - Fixed bug in :class:`preprocessing.MinMaxScaler` causing incorrect scaling of the features for non-default ``feature_range`` settings. By `Andreas Müller`_. - ``max_features`` in :class:`tree.DecisionTreeClassifier`, :class:`tree.DecisionTreeRegressor` and all derived ensemble estimators now supports percentage values. By `Gilles Louppe`_. - Performance improvements in :class:`isotonic.IsotonicRegression` by `Nelle Varoquaux`_. - :func:`metrics.accuracy_score` has an option normalize to return the fraction or the number of correctly classified sample by `Arnaud Joly`_. - Added :func:`metrics.log_loss` that computes log loss, aka cross-entropy loss. By Jochen Wersdörfer and `Lars Buitinck`_. - A bug that caused :class:`ensemble.AdaBoostClassifier`\'s to output incorrect probabilities has been fixed. - Feature selectors now share a mixin providing consistent `transform`, `inverse_transform` and `get_support` methods. By `Joel Nothman`_. - A fitted :class:`grid_search.GridSearchCV` or :class:`grid_search.RandomizedSearchCV` can now generally be pickled. By `Joel Nothman`_. - Refactored and vectorized implementation of :func:`metrics.roc_curve` and :func:`metrics.precision_recall_curve`. By `Joel Nothman`_. - The new estimator :class:`sklearn.decomposition.TruncatedSVD` performs dimensionality reduction using SVD on sparse matrices, and can be used for latent semantic analysis (LSA). By `Lars Buitinck`_. - Added self-contained example of out-of-core learning on text data :ref:`example_applications_plot_out_of_core_classification.py`. By `Eustache Diemert`_. - The default number of components for :class:`sklearn.decomposition.RandomizedPCA` is now correctly documented to be ``n_features``. This was the default behavior, so programs using it will continue to work as they did. - :class:`sklearn.cluster.KMeans` now fits several orders of magnitude faster on sparse data (the speedup depends on the sparsity). By `Lars Buitinck`_. - Reduce memory footprint of FastICA by `Denis Engemann`_ and `Alexandre Gramfort`_. - Verbose output in :mod:`sklearn.ensemble.gradient_boosting` now uses a column format and prints progress in decreasing frequency. It also shows the remaining time. By `Peter Prettenhofer`_. - :mod:`sklearn.ensemble.gradient_boosting` provides out-of-bag improvement :attr:`~sklearn.ensemble.GradientBoostingRegressor.oob_improvement_` rather than the OOB score for model selection. An example that shows how to use OOB estimates to select the number of trees was added. By `Peter Prettenhofer`_. - Most metrics now support string labels for multiclass classification by `Arnaud Joly`_ and `Lars Buitinck`_. - New OrthogonalMatchingPursuitCV class by `Alexandre Gramfort`_ and `Vlad Niculae`_. - Fixed a bug in :class:`sklearn.covariance.GraphLassoCV`: the \'alphas\' parameter now works as expected when given a list of values. By Philippe Gervais. - Fixed an important bug in :class:`sklearn.covariance.GraphLassoCV` that prevented all folds provided by a CV object to be used (only the first 3 were used). When providing a CV object, execution time may thus increase significantly compared to the previous version (bug results are correct now). By Philippe Gervais. - :class:`cross_validation.cross_val_score` and the :mod:`grid_search` module is now tested with multi-output data by `Arnaud Joly`_. - :func:`datasets.make_multilabel_classification` can now return the output in label indicator multilabel format by `Arnaud Joly`_. - K-nearest neighbors, :class:`neighbors.KNeighborsRegressor` and :class:`neighbors.RadiusNeighborsRegressor`, and radius neighbors, :class:`neighbors.RadiusNeighborsRegressor` and :class:`neighbors.RadiusNeighborsClassifier` support multioutput data by `Arnaud Joly`_. - Random state in LibSVM-based estimators (:class:`svm.SVC`, :class:`NuSVC`, :class:`OneClassSVM`, :class:`svm.SVR`, :class:`svm.NuSVR`) can now be controlled. This is useful to ensure consistency in the probability estimates for the classifiers trained with ``probability=True``. By `Vlad Niculae`_. - Out-of-core learning support for discrete naive Bayes classifiers :class:`sklearn.naive_bayes.MultinomialNB` and :class:`sklearn.naive_bayes.BernoulliNB` by adding the ``partial_fit`` method by `Olivier Grisel`_. - New website design and navigation by `Gilles Louppe`_, `Nelle Varoquaux`_, Vincent Michel and `Andreas Müller`_. - Improved documentation on :ref:`multi-class, multi-label and multi-output classification ` by `Yannick Schwartz`_ and `Arnaud Joly`_. - Better input and error handling in the :mod:`metrics` module by `Arnaud Joly`_ and `Joel Nothman`_. - Speed optimization of the :mod:`hmm` module by `Mikhail Korobov`_ - Significant speed improvements for :class:`sklearn.cluster.DBSCAN`_ by `cleverless `_ * API changes: - The :func:`auc_score` was renamed :func:`roc_auc_score`. - Testing scikit-learn with `sklearn.test()` is deprecated. Use `nosetest sklearn` from the command line. - Feature importances in :class:`tree.DecisionTreeClassifier`, :class:`tree.DecisionTreeRegressor` and all derived ensemble estimators are now computed on the fly when accessing the ``feature_importances_`` attribute. Setting ``compute_importances=True`` is no longer required. By `Gilles Louppe`_. - :class:`linear_model.lasso_path` and :class:`linear_model.enet_path` can return its results in the same format as that of :class:`linear_model.lars_path`. This is done by setting the `return_models` parameter to `False`. By `Jaques Grobler`_ and `Alexandre Gramfort`_ - :class:`grid_search.IterGrid` was renamed to :class:`grid_search.ParameterGrid`. - Fixed bug in :class:`KFold` causing imperfect class balance in some cases. By `Alexandre Gramfort`_ and Tadej Janež. - :class:`sklearn.neighbors.BallTree` has been refactored, and a :class:`sklearn.neighbors.KDTree` has been added which shares the same interface. The Ball Tree now works with a wide variety of distance metrics. Both classes have many new methods, including single-tree and dual-tree queries, breadth-first and depth-first searching, and more advanced queries such as kernel density estimation and 2-point correlation functions. By `Jake Vanderplas`_ - Support for scipy.spatial.cKDTree within neighbors queries has been removed, and the functionality replaced with the new :class:`KDTree` class. - :class:`sklearn.neighbors.KernelDensity` has been added, which performs efficient kernel density estimation with a variety of kernels. - :class:`sklearn.decomposition.KernelPCA` now always returns output with ``n_components`` components, unless the new parameter ``remove_zero_eig`` is set to ``True``. This new behavior is consistent with the way kernel PCA was always documented; previously, the removal of components with zero eigenvalues was tacitly performed on all data. - ``gcv_mode=\"auto\"`` no longer tries to perform SVD on a densified sparse matrix in :class:`sklearn.linear_model.RidgeCV`. - Sparse matrix support in :class:`sklearn.decomposition.RandomizedPCA` is now deprecated in favor of the new ``TruncatedSVD``. - :class:`cross_validation.KFold` and :class:`cross_validation.StratifiedKFold` now enforce `n_folds >= 2` otherwise a ``ValueError`` is raised. By `Olivier Grisel`_. - :func:`datasets.load_files`\'s ``charset`` and ``charset_errors`` parameters were renamed ``encoding`` and ``decode_errors``. - Attribute ``oob_score_`` in :class:`sklearn.ensemble.GradientBoostingRegressor` and :class:`sklearn.ensemble.GradientBoostingClassifier` is deprecated and has been replaced by ``oob_improvement_`` . - Attributes in OrthogonalMatchingPursuit have been deprecated (copy_X, Gram, ...) and precompute_gram renamed precompute for consistency. See #2224. - :class:`sklearn.preprocessing.StandardScaler` now converts integer input to float, and raises a warning. Previously it rounded for dense integer input. - Better input validation, warning on unexpected shapes for y. - Fix building on 13.1+ - Update BuildRequires - Cleanup spec file formatting
Thu Oct 24 14:00:00 2013 speilickeAATTsuse.com - Require python-setuptools instead of distribute (upstreams merged)
Fri May 3 14:00:00 2013 toddrme2178AATTgmail.com - Update to version 0.13.1
Sat Oct 13 14:00:00 2012 Angelos Tzotsos - Update to version 0.12.1
Sun Jun 3 14:00:00 2012 toddrme2178AATTgmail.com - Clean up spec file - Update to version 0.11
Wed Mar 7 13:00:00 2012 scorotAATTfree.fr - remove unneeded libatals3-devel dependency
Mon Oct 10 14:00:00 2011 scorotAATTgtt.fr - fix python-Sphinx requirement
Sat Oct 23 14:00:00 2010 scorotAATTgtt.fr - first package - version 0.5
|
|
|