|
|
|
|
Changelog for python311-pandas-pyarrow-2.2.3-lp156.147.1.noarch.rpm :
* Fri Oct 11 2024 Steve Kowalik - Prepare for Python 3.13, by skipping it if we aren\'t building for it. * Tue Oct 01 2024 John Paul Adrian Glaubitz - Update to 2.2.3 * Bug in eval() on complex including division / discards imaginary part. (GH 21374) * Minor fixes for numpy 2.1 compatibility. (GH 59444) * Missing licenses for 3rd party dependencies were added back into the wheels. (GH 58632)- Drop pandas-pr58269-pyarrow16xpass.patch, merged upstream- Drop pandas-pr58484-matplotlib.patch, merged upstream- Drop pandas-pr59175-matplotlib.patch, merged upstream- Drop pandas-pr59353-np2eval.patch, merged upstream- Drop tests-npdev.patch, merged upstream- Drop tests-timedelta.patch, merged upstream- Refresh tests-nomkl.patch- Renumber remaining patches * Mon Sep 16 2024 Markéta Machová - Add bunch of patches to fix the testsuite with NumPy 2.1 * tests-wasm.patch * tests-nomkl.patch * tests-timedelta.patch * tests-npdev.patch- Skip one test failing with new timezone, the patch would be too big * Sun Sep 08 2024 Ben Greiner - Drop pandas-pr58720-xarray-dp.patch: It does no longer xfail * Wed Aug 28 2024 Ben Greiner - Skip overflowing tests on 32-bit * Sun Aug 25 2024 Ben Greiner - Add pandas-pr59353-np2eval.patch * gh#pandas-dev/pandas#59353 * gh#pandas-dev/pandas#58548 * Thu Jul 11 2024 Ben Greiner - Add pandas-pr59175-matplotlib.patch -- gh#pandas-dev/pandas#59175 * Sun May 12 2024 Matej Cepl - Add pandas-pr58269-pyarrow16xpass.patch (gh#pandas-dev/pandas!58269)- Add pandas-pr58720-xarray-dp.patch (gh#pandas-dev/pandas!58720), which makes pandas compatible with the modern xarray- Add pandas-pr58484-matplotlib.patch (gh#pandas-dev/pandas!58484), which makes pandas compatible with the modern matplotlib- Skip also test_plot_scatter_shape (gh#pandas-dev/pandas#58851) * Thu May 09 2024 Matej Cepl - Skip build on Python 3.10 ... too many dependencies are missing. * Tue Apr 30 2024 Ben Greiner - Update to 2.2.2 * Pandas 2.2.2 is now compatible with numpy 2.0 * Pandas 2.2.2 is the first version of pandas that is generally compatible with the upcoming numpy 2.0 release, and wheels for pandas 2.2.2 will work with both numpy 1.x and 2.x. One major caveat is that arrays created with numpy 2.0’s new StringDtype will convert to object dtyped arrays upon Series/DataFrame creation. Full support for numpy 2.0’s StringDtype is expected to land in pandas 3.0. * As usual please report any bugs discovered to our issue tracker [#]# Fixed regressions * DataFrame.__dataframe__() was producing incorrect data buffers when the a column’s type was a pandas nullable on with missing values (GH 56702) * DataFrame.__dataframe__() was producing incorrect data buffers when the a column’s type was a pyarrow nullable on with missing values (GH 57664) * Avoid issuing a spurious DeprecationWarning when a custom DataFrame or Series subclass method is called (GH 57553) * Fixed regression in precision of to_datetime() with string and unit input (GH 57051) [#]# Bug fixes * DataFrame.__dataframe__() was producing incorrect data buffers when the column’s type was nullable boolean (GH 55332) * DataFrame.__dataframe__() was showing bytemask instead of bitmask for \'string[pyarrow]\' validity buffer (GH 57762) * DataFrame.__dataframe__() was showing non-null validity buffer (instead of None) \'string[pyarrow]\' without missing values (GH 57761) * DataFrame.to_sql() was failing to find the right table when using the schema argument (GH 57539)- Remove obsolete python39 multibuild- Add pandas-pr58269-pyarrow16xpass.patch gh#pandas-dev/pandas#58269 * Mon Mar 04 2024 Ben Greiner - No xarrary for python 3.9 anymore: Remove from pandas[all] and exclude pandas[computation]. Reenable testing to check it. It will be skipped automatically when python39 is dropped from Tumbleweed globally.- Fix 15.x build: requires newer compiler- Fix 15.x test skips: sle15_python_module_pythons needs to be declared earlier * Fri Feb 23 2024 Ben Greiner - Update to 2.2.1 [#]# Enhancements * Added pyarrow pip extra so users can install pandas and pyarrow with pip with pip install pandas[pyarrow] (#54466) [#]# Fixed regressions * Fixed memory leak in `read_csv` (#57039) * Fixed performance regression in `Series.combine_first` (#55845) * Fixed regression causing overflow for near-minimum timestamps (#57150) * Fixed regression in `concat` changing long-standing behavior that always sorted the non-concatenation axis when the axis was a `DatetimeIndex` (#57006) * Fixed regression in `merge_ordered` raising TypeError for fill_method=\"ffill\" and how=\"left\" (#57010) * Fixed regression in `pandas.testing.assert_series_equal` defaulting to check_exact=True when checking the `Index` (#57067) * Fixed regression in `read_json` where an `Index` would be returned instead of a `RangeIndex` (#57429) * Fixed regression in `wide_to_long` raising an AttributeError for string columns (#57066) * Fixed regression in `.DataFrameGroupBy.idxmin`, `.DataFrameGroupBy.idxmax`, `.SeriesGroupBy.idxmin`, `.SeriesGroupBy.idxmax` ignoring the skipna argument (#57040) * Fixed regression in `.DataFrameGroupBy.idxmin`, `.DataFrameGroupBy.idxmax`, `.SeriesGroupBy.idxmin`, `.SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (#57040) * Fixed regression in `CategoricalIndex.difference` raising KeyError when other contains null values other than NaN (#57318) * Fixed regression in `DataFrame.groupby` raising ValueError when grouping by a `Series` in some cases (#57276) * Fixed regression in `DataFrame.loc` raising IndexError for non-unique, masked dtype indexes where result has more than 10,000 rows (#57027) * Fixed regression in `DataFrame.loc` which was unnecessarily throwing \"incompatible dtype warning\" when expanding with partial row indexer and multiple columns (see PDEP6) (#56503) * Fixed regression in `DataFrame.map` with na_action=\"ignore\" not being respected for NumPy nullable and `ArrowDtypes` (#57316) * Fixed regression in `DataFrame.merge` raising ValueError for certain types of 3rd-party extension arrays (#57316) * Fixed regression in `DataFrame.query` with all NaT column with object dtype (#57068) * Fixed regression in `DataFrame.shift` raising AssertionError for axis=1 and empty `DataFrame` (#57301) * Fixed regression in `DataFrame.sort_index` not producing a stable sort for a index with duplicates (#57151) * Fixed regression in `DataFrame.to_dict` with orient=\'list\' and datetime or timedelta types returning integers (#54824) * Fixed regression in `DataFrame.to_json` converting nullable integers to floats (#57224) * Fixed regression in `DataFrame.to_sql` when method=\"multi\" is passed and the dialect type is not Oracle (#57310) * Fixed regression in `DataFrame.transpose` with nullable extension dtypes not having F-contiguous data potentially causing exceptions when used (#57315) * Fixed regression in `DataFrame.update` emitting incorrect warnings about downcasting (#57124) * Fixed regression in `DataFrameGroupBy.idxmin`, `DataFrameGroupBy.idxmax`, `SeriesGroupBy.idxmin`, `SeriesGroupBy.idxmax` ignoring the skipna argument (#57040) * Fixed regression in `DataFrameGroupBy.idxmin`, `DataFrameGroupBy.idxmax`, `SeriesGroupBy.idxmin`, `SeriesGroupBy.idxmax` where values containing the minimum or maximum value for the dtype could produce incorrect results (#57040) * Fixed regression in `ExtensionArray.to_numpy` raising for non-numeric masked dtypes (#56991) * Fixed regression in `Index.join` raising TypeError when joining an empty index to a non-empty index containing mixed dtype values (#57048) * Fixed regression in `Series.astype` introducing decimals when converting from integer with missing values to string dtype (#57418) * Fixed regression in `Series.pct_change` raising a ValueError for an empty `Series` (#57056) * Fixed regression in `Series.to_numpy` when dtype is given as float and the data contains NaNs (#57121) * Fixed regression in addition or subtraction of `DateOffset` objects with millisecond components to datetime64 `Index`, `Series`, or `DataFrame` (#57529) [#]# Bug fixes * Fixed bug in `pandas.api.interchange.from_dataframe` which was raising for Nullable integers (#55069) * Fixed bug in `pandas.api.interchange.from_dataframe` which was raising for empty inputs (#56700) * Fixed bug in `pandas.api.interchange.from_dataframe` which wasn\'t converting columns names to strings (#55069) * Fixed bug in `DataFrame.__getitem__` for empty `DataFrame` with Copy-on-Write enabled (#57130) * Fixed bug in `PeriodIndex.asfreq` which was silently converting frequencies which are not supported as period frequencies instead of raising an error (#56945) [#]# Note * The DeprecationWarning that was raised when pandas was imported without PyArrow being installed has been removed. This decision was made because the warning was too noisy for too many users and a lot of feedback was collected about the decision to make PyArrow a required dependency. Pandas is currently considering the decision whether or not PyArrow should be added as a hard dependency in 3.0. Interested users can follow the discussion here. * Added the argument skipna to `DataFrameGroupBy.first`, `DataFrameGroupBy.last`, `SeriesGroupBy.first`, and `SeriesGroupBy.last`; achieving skipna=False used to be available via `DataFrameGroupBy.nth`, but the behavior was changed in pandas 2.0.0 (#57019) * Added the argument skipna to `Resampler.first`, `Resampler.last` (#57019)- Release notes for 2.2.0 * For full changelog see https://github.com/pandas-dev/pandas/blob/main/doc/source/whatsnew/v2.2.0.rst [#]# Enhancements * ADBC Driver support in to_sql and read_sql * Create a pandas Series based on one or more conditions * to_numpy for NumPy nullable and Arrow types converts to suitable NumPy dtype * Series.struct accessor for PyArrow structured data * Series.list accessor for PyArrow list data * Calamine engine for `read_excel` [#]# Notable bug fixes * `merge` and `DataFrame.join` now consistently follow documented sort behavior * `merge` and `DataFrame.join` no longer reorder levels when levels differ * Increased minimum versions for dependencies [#]# Deprecations * Chained assignment * Deprecate aliases M, Q, Y, etc. in favour of ME, QE, YE, etc. for offsets * Deprecated automatic downcasting- Simplify flavor test setup: obs can evaluate %{shrink:} now * Tue Feb 06 2024 Dirk Müller - enable py312 testing, remove py39 testing * Fri Jan 12 2024 pgajdosAATTsuse.com- have a possibility to not use pyarrow [bsc#1218592] * Wed Dec 13 2023 Ben Greiner - Update to 2.1.4 [#]# Fixed regressions * Fixed regression when trying to read a pickled pandas DataFrame from pandas 1.3 (GH 55137) [#]# Bug fixes * Bug in Series constructor raising DeprecationWarning when index is a list of Series (GH 55228) * Bug in Series when trying to cast date-like string inputs to ArrowDtype of pyarrow.timestamp (GH 56266) * Bug in DataFrame.apply() where passing raw=True ignored args passed to the applied function (GH 55753) * Bug in Index.__getitem__() returning wrong result for Arrow dtypes and negative stepsize (GH 55832) * Fixed bug in to_numeric() converting to extension dtype for string[pyarrow_numpy] dtype (GH 56179) * Fixed bug in DataFrameGroupBy.min() and DataFrameGroupBy.max() not preserving extension dtype for empty object (GH 55619) * Fixed bug in DataFrame.__setitem__() casting Index with object-dtype to PyArrow backed strings when infer_string option is set (GH 55638) * Fixed bug in DataFrame.to_hdf() raising when columns have StringDtype (GH 55088) * Fixed bug in Index.insert() casting object-dtype to PyArrow backed strings when infer_string option is set (GH 55638) * Fixed bug in Series.__ne__() resulting in False for comparison between NA and string value for dtype=\"string[pyarrow_numpy]\" (GH 56122) * Fixed bug in Series.mode() not keeping object dtype when infer_string is set (GH 56183) * Fixed bug in Series.reset_index() not preserving object dtype when infer_string is set (GH 56160) * Fixed bug in Series.str.split() and Series.str.rsplit() when pat=None for ArrowDtype with pyarrow.string (GH 56271) * Fixed bug in Series.str.translate() losing object dtype when string option is set (GH 56152)- Go back to Cython0, it has NOT been unpinned by upstream released version * https://github.com/pandas-dev/pandas/blob/v2.1.4/pyproject.toml#L8 * See also gh#jsonpickle/jsonpickle#460 * Fri Dec 01 2023 Steve Kowalik - Update to 2.1.3: * Reverted deprecation of fill_method=None in DataFrame.pct_change(), Series.pct_change(), DataFrameGroupBy.pct_change(), and SeriesGroupBy.pct_change(); the values \'backfill\', \'bfill\', \'pad\', and \'ffill\' are still deprecated * Fixed regressions + Fixed infinite recursion from operations that return a new object on some DataFrame subclasses + Fixed regression in DataFrame.join() where result has missing values and dtype is arrow backed string + Fixed regression in rolling() where non-nanosecond index or on column would produce incorrect results + Fixed regression in DataFrame.resample() which was extrapolating back to origin when origin was outside its bounds + Fixed regression in DataFrame.sort_index() which was not sorting correctly when the index was a sliced MultiIndex + Fixed regression in DataFrameGroupBy.agg() and SeriesGroupBy.agg() where if the option compute.use_numba was set to True, groupby methods not supported by the numba engine would raise a TypeError + Fixed performance regression with wide DataFrames, typically involving methods where all columns were accessed individually + Fixed regression in merge_asof() raising TypeError for by with datetime and timedelta dtypes + Fixed regression in read_parquet() when reading a file with a string column consisting of more than 2 GB of string data and using the \"string\" dtype + Fixed regression in DataFrame.to_sql() not roundtripping datetime columns correctly for sqlite when using detect_types + Fixed regression in construction of certain DataFrame or Series subclasses * Bug fixes + Bug in DatetimeIndex.diff() raising TypeError + Bug in Index.isin() raising for Arrow backed string and None value + Fix read_parquet() and read_feather() for CVE-2023-47248 + Fixed bug in DataFrameGroupBy reductions not preserving object dtype when infer_string is set + Fixed bug in SeriesGroupBy.value_counts() returning incorrect dtype for string columns + Fixed bug in Categorical.equals() if other has arrow backed string dtype + Fixed bug in DataFrame.__setitem__() not inferring string dtype for zero-dimensional array with infer_string=True + Fixed bug in DataFrame.idxmin() and DataFrame.idxmax() raising for arrow dtypes + Fixed bug in DataFrame.interpolate() raising incorrect error message + Fixed bug in Index.insert() raising when inserting None into Index with dtype=\"string[pyarrow_numpy]\" + Fixed bug in Series.all() and Series.any() not treating missing values correctly for dtype=\"string[pyarrow_numpy]\" + Fixed bug in Series.floordiv() for ArrowDtype + Fixed bug in Series.mode() not sorting values for arrow backed string dtype + Fixed bug in Series.rank() for string[pyarrow_numpy] dtype + Fixed bug in Series.str.extractall() for ArrowDtype dtype being converted to object + Fixed bug where PDEP-6 warning about setting an item of an incompatible dtype was being shown when creating a new conditional column + Silence Period[B] warnings introduced by GH 53446 during normal plotting activity + Fixed bug in Series constructor not inferring string dtype when NA is the first value and infer_string is set- Prepare for Python 3.12, include the flavor check.- Unpin Cython, upstream has moved onto 3. * Sat Oct 14 2023 Bernhard Wiedemann - Fix random build failures * Sat Oct 07 2023 Ben Greiner - Update to 2.1.1 [#]# Fixed regressions * Fixed regression in concat() when DataFrame ‘s have two different extension dtypes (GH 54848) * Fixed regression in merge() when merging over a PyArrow string index (GH 54894) * Fixed regression in read_csv() when usecols is given and dtypes is a dict for engine=\"python\" (GH 54868) * Fixed regression in read_csv() when delim_whitespace is True (GH 54918, GH 54931) * Fixed regression in GroupBy.get_group() raising for axis=1 (GH 54858) * Fixed regression in DataFrame.__setitem__() raising AssertionError when setting a Series with a partial MultiIndex (GH 54875) * Fixed regression in DataFrame.filter() not respecting the order of elements for filter (GH 54980) * Fixed regression in DataFrame.to_sql() not roundtripping datetime columns correctly for sqlite (GH 54877) * Fixed regression in DataFrameGroupBy.agg() when aggregating a DataFrame with duplicate column names using a dictionary (GH 55006) * Fixed regression in MultiIndex.append() raising when appending overlapping IntervalIndex levels (GH 54934) * Fixed regression in Series.drop_duplicates() for PyArrow strings (GH 54904) * Fixed regression in Series.interpolate() raising when fill_value was given (GH 54920) * Fixed regression in Series.value_counts() raising for numeric data if bins was specified (GH 54857) * Fixed regression in comparison operations for PyArrow backed columns not propagating exceptions correctly (GH 54944) * Fixed regression when comparing a Series with datetime64 dtype with None (GH 54870) [#]# Bug fixes * Fixed bug for ArrowDtype raising NotImplementedError for fixed-size list (GH 55000) * Fixed bug in DataFrame.stack() with future_stack=True and columns a non-MultiIndex consisting of tuples (GH 54948) * Fixed bug in Series.dt.tz() with ArrowDtype where a string was returned instead of a tzinfo object (GH 55003) * Fixed bug in Series.pct_change() and DataFrame.pct_change() showing unnecessary FutureWarning (GH 54981) [#]# Other * Reverted the deprecation that disallowed Series.apply() returning a DataFrame when the passed-in callable returns a Series object (GH 52116)- Drop pandas-pr55073-pyarrow13.patch merged upstream * Sun Sep 10 2023 Ben Greiner - Fix test failures with pyarrow 13 * Add pandas-pr55073-pyarrow13.patch * gh#pandas-dev/pandas#55073 * gh#pandas-dev/pandas#55048 * gh#pandas-dev/pandas#55020 * Tue Sep 05 2023 Ben Greiner - Use git cloned archive gh#pandas-dev/pandas#54907 * Thu Aug 31 2023 Ben Greiner - Update to 2.1.0 * https://pandas.pydata.org/pandas-docs/version/2.1.0/whatsnew/v2.1.0.html * Avoid NumPy object dtype for strings by default * DataFrame reductions preserve extension dtypes * Copy-on-Write improvements * New DataFrame.map() method and support for ExtensionArrays * New implementation of DataFrame.stack() * Other minor enhancements (see link above) [#]# Backwards incompatible API changes * pandas 2.1.0 supports Python 3.9 and higher * Increased minimum versions for numpy 1.22.3 and some optional dependencies * arrays.PandasArray has been renamed NumpyExtensionArray and the attached dtype name changed from PandasDtype to NumpyEADtype; importing PandasArray still works until the next major version (GH 53694) [#]# Deprecations * Deprecated silent upcasting in setitem-like Series operations * Deprecated parsing datetimes with mixed time zones * Other Deprecation (see link above) [#]# More * Performance Improvements (see link above) * Bug fixes (see linkl above)- Switch to meson build system * Sun Aug 13 2023 Dirk Müller - update to 2.0.3: * Bug in Timestamp.weekday`() was returning incorrect results before \'0000-02-29\' * Fixed performance regression in merging on datetime-like columns * Fixed regression when DataFrame.to_string() creates extra space for string dtypes * Bug in DataFrame.convert_dtype() and Series.convert_dtype() when trying to convert ArrowDtype with dtype_backend=\"nullable_numpy\" * Bug in RangeIndex.union() when using sort=True with another RangeIndex * Bug in Series.reindex() when expanding a non-nanosecond datetime or timedelta * Bug in read_csv() when defining dtype with bool[pyarrow] for the \"c\" and \"python\" engines * Bug in Series.str.split() and Series.str.rsplit() with expand=True * Bug in indexing methods (e.g. DataFrame.__getitem__()) where taking the entire DataFrame/Series would raise an OverflowError when Copy on Write was enabled the length of the array was over the maximum size a 32-bit integer can hold * Bug when constructing a DataFrame with columns of an ArrowDtype with a pyarrow.dictionary type that reindexes the data * Bug when indexing a DataFrame or Series with an Index with a timestamp ArrowDtype would raise an AttributeError- drop pandas-fix-tests.patch (upstream) * Thu Jun 22 2023 Guillaume GARDET - Fix tests on aarch64: * pandas-fix-tests.patch * Sun Jun 11 2023 Johannes Kastl - do not use %elif for python-numpy dependency condition * Wed Jun 07 2023 Ben Greiner - Increase minimum memory constraints for tests * Sat May 27 2023 Ben Greiner - Update to 2.0.2 [#]# Fixed regressions * Fixed performance regression in GroupBy.apply() (GH53195) * Fixed regression in merge() on Windows when dtype is np.intc (GH52451) * Fixed regression in read_sql() dropping columns with duplicated column names (GH53117) * Fixed regression in DataFrame.loc() losing MultiIndex name when enlarging object (GH53053) * Fixed regression in DataFrame.to_string() printing a backslash at the end of the first row of data, instead of headers, when the DataFrame doesn’t fit the line width (GH53054) * Fixed regression in MultiIndex.join() returning levels in wrong order (GH53093) [#]# Bug fixes * Bug in arrays.ArrowExtensionArray incorrectly assigning dict instead of list for .type with pyarrow.map_ and raising a NotImplementedError with pyarrow.struct (GH53328) * Bug in api.interchange.from_dataframe() was raising IndexError on empty categorical data (GH53077) * Bug in api.interchange.from_dataframe() was returning DataFrame’s of incorrect sizes when called on slices (GH52824) * Bug in api.interchange.from_dataframe() was unnecessarily raising on bitmasks (GH49888) * Bug in merge() when merging on datetime columns on different resolutions (GH53200) * Bug in read_csv() raising OverflowError for engine=\"pyarrow\" and parse_dates set (GH53295) * Bug in to_datetime() was inferring format to contain \"%H\" instead of \"%I\" if date contained “AM” / “PM” tokens (GH53147) * Bug in DataFrame.convert_dtypes() ignores convert_ * keywords when set to False dtype_backend=\"pyarrow\" (GH52872) * Bug in DataFrame.convert_dtypes() losing timezone for tz-aware dtypes and dtype_backend=\"pyarrow\" (GH53382) * Bug in DataFrame.sort_values() raising for PyArrow dictionary dtype (GH53232) * Bug in Series.describe() treating pyarrow-backed timestamps and timedeltas as categorical data (GH53001) * Bug in Series.rename() not making a lazy copy when Copy-on-Write is enabled when a scalar is passed to it (GH52450) * Bug in pd.array() raising for NumPy array and pa.large_string or pa.large_binary (GH52590) * Bug in DataFrame.__getitem__() not preserving dtypes for MultiIndex partial keys (GH51895) [#]# Other * Raised a better error message when calling Series.dt.to_pydatetime() with ArrowDtype with pyarrow.date32 or pyarrow.date64 type (GH52812)- Release to 2.0.1 [#]# Fixed regressions * Fixed regression for subclassed Series when constructing from a dictionary (GH52445) * Fixed regression in SeriesGroupBy.agg() failing when grouping with categorical data, multiple groupings, as_index=False, and a list of aggregations (GH52760) * Fixed regression in DataFrame.pivot() changing Index name of input object (GH52629) * Fixed regression in DataFrame.resample() raising on a DataFrame with no columns (GH52484) * Fixed regression in DataFrame.sort_values() not resetting index when DataFrame is already sorted and ignore_index=True (GH52553) * Fixed regression in MultiIndex.isin() raising TypeError for Generator (GH52568) * Fixed regression in Series.describe() showing RuntimeWarning for extension dtype Series with one element (GH52515) * Fixed regression when adding a new column to a DataFrame when the DataFrame.columns was a RangeIndex and the new key was hashable but not a scalar (GH52652) [#]# Bug fixes * Bug in Series.dt.days that would overflow int32 number of days (GH52391) * Bug in arrays.DatetimeArray constructor returning an incorrect unit when passed a non-nanosecond numpy datetime array (GH52555) * Bug in ArrowExtensionArray with duration dtype overflowing when constructed from data containing numpy NaT (GH52843) * Bug in Series.dt.round() when passing a freq of equal or higher resolution compared to the Series would raise a ZeroDivisionError (GH52761) * Bug in Series.median() with ArrowDtype returning an approximate median (GH52679) * Bug in api.interchange.from_dataframe() was unnecessarily raising on categorical dtypes (GH49889) * Bug in api.interchange.from_dataframe() was unnecessarily raising on large string dtypes (GH52795) * Bug in pandas.testing.assert_series_equal() where check_dtype=False would still raise for datetime or timedelta types with different resolutions (GH52449) * Bug in read_csv() casting PyArrow datetimes to NumPy when dtype_backend=\"pyarrow\" and parse_dates is set causing a performance bottleneck in the process (GH52546) * Bug in to_datetime() and to_timedelta() when trying to convert numeric data with a ArrowDtype (GH52425) * Bug in to_numeric() with errors=\'coerce\' and dtype_backend=\'pyarrow\' with ArrowDtype data (GH52588) * Bug in ArrowDtype.__from_arrow__() not respecting if dtype is explicitly given (GH52533) * Bug in DataFrame.describe() not respecting ArrowDtype in include and exclude (GH52570) * Bug in DataFrame.max() and related casting different Timestamp resolutions always to nanoseconds (GH52524) * Bug in Series.describe() not returning ArrowDtype with pyarrow.float64 type with numeric data (GH52427) * Bug in Series.dt.tz_localize() incorrectly localizing timestamps with ArrowDtype (GH52677) * Bug in arithmetic between np.datetime64 and np.timedelta64 NaT scalars with units always returning nanosecond resolution (GH52295) * Bug in logical and comparison operations between ArrowDtype and numpy masked types (e.g. \"boolean\") (GH52625) * Fixed bug in merge() when merging with ArrowDtype one one and a NumPy dtype on the other side (GH52406) * Fixed segfault in Series.to_numpy() with null[pyarrow] dtype (GH52443) [#]# Other * DataFrame created from empty dicts had columns of dtype object. It is now a RangeIndex (GH52404) * Series created from empty dicts had index of dtype object. It is now a RangeIndex (GH52404) * Implemented Series.str.split() and Series.str.rsplit() for ArrowDtype with pyarrow.string (GH52401) * Implemented most str accessor methods for ArrowDtype with pyarrow.string (GH52401) * Supplying a non-integer hashable key that tests False in api.types.is_scalar() now raises a KeyError for RangeIndex.get_loc(), like it does for Index.get_loc(). Previously it raised an InvalidIndexError (GH52652).- Release to 2.0.0 [#]# Enhancements * Installing optional dependencies with pip extras * Index can now hold numpy numeric dtypes * Argument dtype_backend , to return pyarrow-backed or numpy-backed nullable dtypes * Copy-on-Write improvements * Other enhancements, see https://pandas.pydata.org/pandas-docs/version/2.0.2/whatsnew/v2.0.0.html#other-enhancements [#]# Notable bug fixes * DataFrameGroupBy.cumsum() and DataFrameGroupBy.cumprod() overflow instead of lossy casting to float * DataFrameGroupBy.nth() and SeriesGroupBy.nth() now behave as filtrations [#]# Backwards incompatible API changes * Construction with datetime64 or timedelta64 dtype with unsupported resolution * Value counts sets the resulting name to count * Disallow astype conversion to non-supported datetime64/timedelta64 dtypes * UTC and fixed-offset timezones default to standard-library tzinfo objects * Empty DataFrames/Series will now default to have a RangeIndex * DataFrame to LaTeX has a new render engine * Increased minimum versions for dependencies * Datetimes are now parsed with a consistent format * Other API changes, see https://pandas.pydata.org/pandas-docs/version/2.0.2/whatsnew/v2.0.0.html#other-api-changes [#]# Deprecations [#]# Removal of prior version deprecations/changes [#]# Performance improvements [#]# Bug fixes- Drop python38 test flavor and start testing python311 which has been missing since. * Mon May 08 2023 Johannes Kastl - add sle15_python_module_pythons * Wed Feb 08 2023 Arun Persaud - specfile: * update copyright year * remove pandas-pr49886-fix-numpy-deprecations.patch, implemented upstreams- update to version 1.5.3: * Fixed regressions + Fixed performance regression in Series.isin() when values is empty (GH49839) + Fixed regression in DataFrame.memory_usage() showing unnecessary FutureWarning when DataFrame is empty (GH50066) + Fixed regression in DataFrameGroupBy.transform() when used with as_index=False (GH49834) + Enforced reversion of color as an alias for c and size as an alias for s in function DataFrame.plot.scatter() (GH49732) + Fixed regression in SeriesGroupBy.apply() setting a name attribute on the result if the result was a DataFrame (GH49907) + Fixed performance regression in setting with the at() indexer (GH49771) + Fixed regression in the methods apply, agg, and transform when used with NumPy functions that informed users to supply numeric_only=True if the operation failed on non-numeric dtypes; such columns must be dropped prior to using these methods (GH50538) + Fixed regression in to_datetime() raising ValueError when parsing array of float containing np.nan (GH50237) * Bug fixes + Bug in the Copy-on-Write implementation losing track of views when indexing a DataFrame with another DataFrame (GH50630) + Bug in Styler.to_excel() leading to error when unrecognized border-style (e.g. \"hair\") provided to Excel writers (GH48649) + Bug in Series.quantile() emitting warning from NumPy when Series has only NA values (GH50681) + Bug when chaining several Styler.concat() calls, only the last styler was concatenated (GH49207) + Fixed bug when instantiating a DataFrame subclass inheriting from typing.Generic that triggered a UserWarning on python 3.11 (GH49649) + Bug in pivot_table() with NumPy 1.24 or greater when the DataFrame columns has nested elements (GH50342) + Bug in pandas.testing.assert_series_equal() (and equivalent assert_ functions) when having nested data and using numpy >= 1.25 (GH50360) * Other + Note: If you are using DataFrame.to_sql(), read_sql(), read_sql_table(), or read_sql_query() with SQLAlchemy 1.4.46 or greater, you may see a sqlalchemy.exc.RemovedIn20Warning. These warnings can be safely ignored for the SQLAlchemy 1.4.x releases as pandas works toward compatibility with SQLAlchemy 2.0. + Reverted deprecation (GH45324) of behavior of Series.__getitem__() and Series.__setitem__() slicing with an integer Index; this will remain positional (GH49612) + A FutureWarning raised when attempting to set values inplace with DataFrame.loc() or DataFrame.iloc() has been changed to a DeprecationWarning (GH48673) * Fri Dec 23 2022 Ben Greiner - Update to version 1.5.2 [#]# Fixed regressions * Fixed regression in MultiIndex.join() for extension array dtypes (GH49277) * Fixed regression in Series.replace() raising RecursionError with numeric dtype and when specifying value=None (GH45725) * Fixed regression in arithmetic operations for DataFrame with MultiIndex columns with different dtypes (GH49769) * Fixed regression in DataFrame.plot() preventing Colormap instance from being passed using the colormap argument if Matplotlib 3.6+ is used (GH49374) * Fixed regression in date_range() returning an invalid set of periods for CustomBusinessDay frequency and start date with timezone (GH49441) * Fixed performance regression in groupby operations (GH49676) * Fixed regression in Timedelta constructor returning object of wrong type when subclassing Timedelta (GH49579) [#]# Bug fixes * Bug in the Copy-on-Write implementation losing track of views in certain chained indexing cases (GH48996) * Fixed memory leak in Styler.to_excel() (GH49751) [#]# Other * Reverted color as an alias for c and size as an alias for s in function DataFrame.plot.scatter() (GH49732)- Add pandas-pr49886-fix-numpy-deprecations.patch * gh#pandas-dev/pandas#49887- Move to PEP518 build * Sat Oct 22 2022 Arun Persaud - update to version 1.5.1: * Fixed regressions + Fixed Regression in Series.__setitem__() casting None to NaN for object dtype (GH48665) + Fixed Regression in DataFrame.loc() when setting values as a DataFrame with all True indexer (GH48701) + Regression in read_csv() causing an EmptyDataError when using an UTF-8 file handle that was already read from (GH48646) + Regression in to_datetime() when utc=True and arg contained timezone naive and aware arguments raised a ValueError (GH48678) + Fixed regression in DataFrame.loc() raising FutureWarning when setting an empty DataFrame (GH48480) + Fixed regression in DataFrame.describe() raising TypeError when result contains NA (GH48778) + Fixed regression in DataFrame.plot() ignoring invalid colormap for kind=\"scatter\" (GH48726) + Fixed regression in MultiIndex.values`() resetting freq attribute of underlying Index object (GH49054) + Fixed performance regression in factorize() when na_sentinel is not None and sort=False (GH48620) + Fixed regression causing an AttributeError during warning emitted if the provided table name in DataFrame.to_sql() and the table name actually used in the database do not match (GH48733) + Fixed regression in to_datetime() when arg was a date string with nanosecond and format contained %f would raise a ValueError (GH48767) + Fixed regression in assert_frame_equal() raising for MultiIndex with Categorical and check_like=True (GH48975) + Fixed regression in DataFrame.fillna() replacing wrong values for datetime64[ns] dtype and inplace=True (GH48863) + Fixed DataFrameGroupBy.size() not returning a Series when axis=1 (GH48738) + Fixed Regression in DataFrameGroupBy.apply() when user defined function is called on an empty dataframe (GH47985) + Fixed regression in DataFrame.apply() when passing non-zero axis via keyword argument (GH48656) + Fixed regression in Series.groupby() and DataFrame.groupby() when the grouper is a nullable data type (e.g. Int64) or a PyArrow-backed string array, contains null values, and dropna=False (GH48794) + Fixed performance regression in Series.isin() with mismatching dtypes (GH49162) + Fixed regression in DataFrame.to_parquet() raising when file name was specified as bytes (GH48944) + Fixed regression in ExcelWriter where the book attribute could no longer be set; however setting this attribute is now deprecated and this ability will be removed in a future version of pandas (GH48780) + Fixed regression in DataFrame.corrwith() when computing correlation on tied data with method=\"spearman\" (GH48826) * Bug fixes + Bug in Series.__getitem__() not falling back to positional for integer keys and boolean Index (GH48653) + Bug in DataFrame.to_hdf() raising AssertionError with boolean index (GH48667) + Bug in assert_index_equal() for extension arrays with non matching NA raising ValueError (GH48608) + Bug in DataFrame.pivot_table() raising unexpected FutureWarning when setting datetime column as index (GH48683) + Bug in DataFrame.sort_values() emitting unnecessary FutureWarning when called on DataFrame with boolean sparse columns (GH48784) + Bug in arrays.ArrowExtensionArray with a comparison operator to an invalid object would not raise a NotImplementedError (GH48833) * Other + Avoid showing deprecated signatures when introspecting functions with warnings about arguments becoming keyword-only (GH48692) * Mon Sep 19 2022 Arun Persaud - specfile: * update required versions- update to version 1.5.0: * long changelog, full version available at https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.5.0.html# * Sat Sep 10 2022 Arun Persaud - specfile: * update required version- update to version 1.4.4: * Fixed regressions + Fixed regression in DataFrame.fillna() not working on a DataFrame with a MultiIndex (GH47649) + Fixed regression in taking NULL objects from a DataFrame causing a segmentation violation. These NULL values are created by numpy.empty_like() (GH46848) + Fixed regression in concat() materializing the Index during sorting even if the Index was already sorted (GH47501) + Fixed regression in concat() or merge() handling of all-NaN ExtensionArrays with custom attributes (GH47762) + Fixed regression in calling bitwise numpy ufuncs (for example, np.bitwise_and) on Index objects (GH46769) + Fixed regression in cut() when using a datetime64 IntervalIndex as bins (GH46218) + Fixed regression in DataFrame.select_dtypes() where include=\"number\" included BooleanDtype (GH46870) + Fixed regression in DataFrame.loc() raising error when indexing with a NamedTuple (GH48124) + Fixed regression in DataFrame.loc() not updating the cache correctly after values were set (GH47867) + Fixed regression in DataFrame.loc() not aligning index in some cases when setting a DataFrame (GH47578) + Fixed regression in DataFrame.loc() setting a length-1 array like value to a single value in the DataFrame (GH46268) + Fixed regression when slicing with DataFrame.loc() with DatetimeIndex with a DateOffset object for its freq (GH46671) + Fixed regression in setting None or non-string value into a string-dtype Series using a mask (GH47628) + Fixed regression in updating a DataFrame column through Series __setitem__ (using chained assignment) not updating column values inplace and using too much memory (GH47172) + Fixed regression in DataFrame.select_dtypes() returning a view on the original DataFrame (GH48090) + Fixed regression using custom Index subclasses (for example, used in xarray) with reset_index() or Index.insert() (GH47071) + Fixed regression in intersection() when the DatetimeIndex has dates crossing daylight savings time (GH46702) + Fixed regression in merge() throwing an error when passing a Series with a multi-level name (GH47946) + Fixed regression in DataFrame.eval() creating a copy when updating inplace (GH47449) + Fixed regression where getting a row using DataFrame.iloc() with SparseDtype would raise (GH46406) * Bug fixes + The FutureWarning raised when passing arguments (other than filepath_or_buffer) as positional in read_csv() is now raised at the correct stacklevel (GH47385) + Bug in DataFrame.to_sql() when method was a callable that did not return an int and would raise a TypeError (GH46891) + Bug in DataFrameGroupBy.value_counts() where subset had no effect (GH46383) + Bug when getting values with DataFrame.loc() with a list of keys causing an internal inconsistency that could lead to a disconnect between frame.at[x, y] vs frame[y].loc[x] (GH22372) + Bug in the Series.dt.strftime() accessor return a float instead of object dtype Series for all-NaT input, which also causes a spurious deprecation warning (GH45858) * Other + The minimum version of Cython needed to compile pandas is now 0.29.32 (GH47978) * Sat Jul 09 2022 Arun Persaud - update to version 1.4.3: * Behavior of concat with empty or all-NA DataFrame columns The behavior change in version 1.4.0 to stop ignoring the data type of empty or all-NA columns with float or object dtype in concat() (Ignoring dtypes in concat with empty or all-NA columns) has been reverted (GH45637). * Fixed regressions + Fixed regression in DataFrame.replace() when the replacement value was explicitly None when passed in a dictionary to to_replace also casting other columns to object dtype even when there were no values to replace (GH46634) + Fixed regression in DataFrame.to_csv() raising error when DataFrame contains extension dtype categorical column (GH46297, GH46812) + Fixed regression in representation of dtypes attribute of MultiIndex (GH46900) + Fixed regression when setting values with DataFrame.loc() updating RangeIndex when index was set as new column and column was updated afterwards (GH47128) + Fixed regression in DataFrame.fillna() and DataFrame.update() creating a copy when updating inplace (GH47188) + Fixed regression in DataFrame.nsmallest() led to wrong results when the sorting column has np.nan values (GH46589) + Fixed regression in read_fwf() raising ValueError when widths was specified with usecols (GH46580) + Fixed regression in concat() not sorting columns for mixed column names (GH47127) + Fixed regression in Groupby.transform() and Groupby.agg() failing with engine=\"numba\" when the index was a MultiIndex (GH46867) + Fixed regression in NaN comparison for Index operations where the same object was compared (GH47105) + Fixed regression is Styler.to_latex() and Styler.to_html() where buf failed in combination with encoding (GH47053) + Fixed regression in read_csv() with index_col=False identifying first row as index names when header=None (GH46955) + Fixed regression in DataFrameGroupBy.agg() when used with list-likes or dict-likes and axis=1 that would give incorrect results; now raises NotImplementedError (GH46995) + Fixed regression in DataFrame.resample() and DataFrame.rolling() when used with list-likes or dict-likes and axis=1 that would raise an unintuitive error message; now raises NotImplementedError (GH46904) + Fixed regression in testing.assert_index_equal() when check_order=False and Index has extension or object dtype (GH47207) + Fixed regression in read_excel() returning ints as floats on certain input sheets (GH46988) + Fixed regression in DataFrame.shift() when axis is columns and fill_value is absent, freq is ignored (GH47039) + Fixed regression in DataFrame.to_json() causing a segmentation violation when DataFrame is created with an index parameter of the type PeriodIndex (GH46683) * Bug fixes + Bug in pandas.eval(), DataFrame.eval() and DataFrame.query() where passing empty local_dict or global_dict was treated as passing None (GH47084) + Most I/O methods no longer suppress OSError and ValueError when closing file handles (GH47136) * Other + The minimum version of Cython needed to compile pandas is now 0.29.30 (GH41935) * Tue Apr 05 2022 Ben Greiner - Update to version 1.4.2 * Fixed regression in DataFrame.drop() and Series.drop() when Index had extension dtype and duplicates (GH45860) * Fixed regression in read_csv() killing python process when invalid file input was given for engine=\"c\" (GH45957) * Fixed memory performance regression in Series.fillna() when called on a DataFrame column with inplace=True (GH46149) * Provided an alternative solution for passing custom Excel formats in Styler.to_excel(), which was a regression based on stricter CSS validation. Examples available in the documentation for Styler.format() (GH46152) * Fixed regression in DataFrame.replace() when a replacement value was also a target for replacement (GH46306) * Fixed regression in DataFrame.replace() when the replacement value was explicitly None when passed in a dictionary to to_replace (GH45601, GH45836) * Fixed regression when setting values with DataFrame.loc() losing MultiIndex names if DataFrame was empty before (GH46317) * Fixed regression when rendering boolean datatype columns with Styler() (GH46384) * Fixed regression in Groupby.rolling() with a frequency window that would raise a ValueError even if the datetimes within each group were monotonic (GH46061) * Fix some cases for subclasses that define their _constructor properties as general callables (GH46018) * Fixed “longtable” formatting in Styler.to_latex() when column_format is given in extended format (GH46037) * Fixed incorrect rendering in Styler.format() with hyperlinks=\"html\" when the url contains a colon or other special characters (GH46389) * Improved error message in Rolling when window is a frequency and NaT is in the rolling axis (GH46087)- Copy back the installed package into the source tree * mimics upstreams test setup of an editable install * avoids conftest.py collection errors with pytest 7 * Sat Feb 12 2022 Arun Persaud - update to version 1.4.1: * Fixed regressions + Regression in Series.mask() with inplace=True and PeriodDtype and an incompatible other coercing to a common dtype instead of raising (GH45546) + Regression in assert_frame_equal() not respecting check_flags=False (GH45554) + Regression in DataFrame.loc() raising ValueError when indexing (getting values) on a MultiIndex with one level (GH45779) + Regression in Series.fillna() with downcast=False incorrectly downcasting object dtype (GH45603) + Regression in api.types.is_bool_dtype() raising an AttributeError when evaluating a categorical Series (GH45615) + Regression in DataFrame.iat() setting values leading to not propagating correctly in subsequent lookups (GH45684) + Regression when setting values with DataFrame.loc() losing Index name if DataFrame was empty before (GH45621) + Regression in join() with overlapping IntervalIndex raising an InvalidIndexError (GH45661) + Regression when setting values with Series.loc() raising with all False indexer and Series on the right hand side (GH45778) + Regression in read_sql() with a DBAPI2 connection that is not an instance of sqlite3.Connection incorrectly requiring SQLAlchemy be installed (GH45660) + Regression in DateOffset when constructing with an integer argument with no keywords (e.g. pd.DateOffset(n)) would behave like datetime.timedelta(days=0) (GH45643, GH45890) * Bug fixes + Fixed segfault in DataFrame.to_json() when dumping tz-aware datetimes in Python 3.10 (GH42130) + Stopped emitting unnecessary FutureWarning in DataFrame.sort_values() with sparse columns (GH45618) + Fixed window aggregations in DataFrame.rolling() and Series.rolling() to skip over unused elements (GH45647) + Fixed builtin highlighters in Styler to be responsive to NA with nullable dtypes (GH45804) + Bug in apply() with axis=1 raising an erroneous ValueError (GH45912) * Other + Reverted performance speedup of DataFrame.corr() for method=pearson to fix precision regression (GH45640, GH42761) * Tue Jan 25 2022 Ben Greiner - Skip more tests on non-intel architectures boo#1167730 * Sun Jan 23 2022 Ben Greiner - Update to version 1.4.0 * https://pandas.pydata.org/docs/whatsnew/v1.4.0.html * Enhancements - Improved warning messages - Index can hold arbitrary ExtensionArrays - Enhancements in Styler - Multi-threaded CSV reading with a new CSV Engine based on pyarrow - Rank function for rolling and expanding windows - Groupby positional indexing - DataFrame.from_dict and DataFrame.to_dict have new \'tight\' option * Notable bug fixes - Inconsistent date string parsing - Ignoring dtypes in concat with empty or all-NA columns - Null-values are no longer coerced to NaN-value in value_counts and mode - mangle_dupe_cols in read_csv no longer renames unique columns conflicting with target names - unstack and pivot_table no longer raises ValueError for result that would exceed int32 limit - groupby.apply consistent transform detection * API changes - Index.get_indexer_for() no longer accepts keyword arguments (other than target); in the past these would be silently ignored if the index was not unique (GH42310) - Change in the position of the min_rows argument in DataFrame.to_string() due to change in the docstring (GH44304) - Reduction operations for DataFrame or Series now raising a ValueError when None is passed for skipna (GH44178) - read_csv() and read_html() no longer raising an error when one of the header rows consists only of Unnamed: columns (GH13054) - Changed the name attribute of several holidays in USFederalHolidayCalendar to match official federal holiday names. * Deprecations - Deprecated Int64Index, UInt64Index & Float64Index - Deprecated Frame.append and Series.append- Split out test runs into separate flavors, optimize memory usage in pytest-xdist runs * Tue Jan 04 2022 Ben Greiner - Update to version 1.3.5 * Fixed regression in Series.equals() when comparing floats with dtype object to None (GH44190) * Fixed regression in merge_asof() raising error when array was supplied as join key (GH42844) * Fixed regression when resampling DataFrame with DateTimeIndex with empty groups and uint8, uint16 or uint32 columns incorrectly raising RuntimeError (GH43329) * Fixed regression in creating a DataFrame from a timezone-aware Timestamp scalar near a Daylight Savings Time transition (GH42505) * Fixed performance regression in read_csv() (GH44106) * Fixed regression in Series.duplicated() and Series.drop_duplicates() when Series has Categorical dtype with boolean categories (GH44351) * Fixed regression in GroupBy.sum() with timedelta64[ns] dtype containing NaT failing to treat that value as NA (GH42659) * Fixed regression in RollingGroupby.cov() and RollingGroupby.corr() when other had the same shape as each group would incorrectly return superfluous groups in the result (GH42915) * Wed Oct 20 2021 Guillaume GARDET - Update to version 1.3.4 * Fixed regression in DataFrame.convert_dtypes() incorrectly converts byte strings to strings (GH43183) * Fixed regression in GroupBy.agg() where it was failing silently with mixed data types along axis=1 and MultiIndex (GH43209) * Fixed regression in merge() with integer and NaN keys failing with outer merge (GH43550) * Fixed regression in DataFrame.corr() raising ValueError with method=\"spearman\" on 32-bit platforms (GH43588) * Fixed performance regression in MultiIndex.equals() (GH43549) * Fixed performance regression in GroupBy.first() and GroupBy.last() with StringDtype (GH41596) * Fixed regression in Series.cat.reorder_categories() failing to update the categories on the Series (GH43232) * Fixed regression in Series.cat.categories() setter failing to update the categories on the Series (GH43334) * Fixed regression in read_csv() raising UnicodeDecodeError exception when memory_map=True (GH43540) * Fixed regression in DataFrame.explode() raising AssertionError when column is any scalar which is not a string (GH43314) * Fixed regression in Series.aggregate() attempting to pass args and kwargs multiple times to the user supplied func in certain cases (GH43357) * Fixed regression when iterating over a DataFrame.groupby.rolling object causing the resulting DataFrames to have an incorrect index if the input groupings were not sorted (GH43386) * Fixed regression in DataFrame.groupby.rolling.cov() and DataFrame.groupby.rolling.corr() computing incorrect results if the input groupings were not sorted (GH43386) * Fixed bug in pandas.DataFrame.groupby.rolling() and pandas.api.indexers.FixedForwardWindowIndexer leading to segfaults and window endpoints being mixed across groups (GH43267) * Fixed bug in GroupBy.mean() with datetimelike values including NaT values returning incorrect results (GH43132) * Fixed bug in Series.aggregate() not passing the first args to the user supplied func in certain cases (GH43357) * Fixed memory leaks in Series.rolling.quantile() and Series.rolling.median() (GH43339) * Mon Sep 20 2021 Ben Greiner - Update to version 1.3.3 * Fixed regression in DataFrame constructor failing to broadcast for defined Index and len one list of Timestamp (GH42810) * Fixed regression in GroupBy.agg() incorrectly raising in some cases (GH42390) * Fixed regression in GroupBy.apply() where nan values were dropped even with dropna=False (GH43205) * Fixed regression in GroupBy.quantile() which was failing with pandas.NA (GH42849) * Fixed regression in merge() where on columns with ExtensionDtype or bool data types were cast to object in right and outer merge (GH40073) * Fixed regression in RangeIndex.where() and RangeIndex.putmask() raising AssertionError when result did not represent a RangeIndex (GH43240) * Fixed regression in read_parquet() where the fastparquet engine would not work properly with fastparquet 0.7.0 (GH43075) * Fixed regression in DataFrame.loc.__setitem__() raising ValueError when setting array as cell value (GH43422) * Fixed regression in is_list_like() where objects with __iter__ set to None would be identified as iterable (GH43373) * Fixed regression in DataFrame.__getitem__() raising error for slice of DatetimeIndex when index is non monotonic (GH43223) * Fixed regression in Resampler.aggregate() when used after column selection would raise if func is a list of aggregation functions (GH42905) * Fixed regression in DataFrame.corr() where Kendall correlation would produce incorrect results for columns with repeated values (GH43401) * Fixed regression in DataFrame.groupby() where aggregation on columns with object types dropped results on those columns (GH42395, GH43108) * Fixed regression in Series.fillna() raising TypeError when filling float Series with list-like fill value having a dtype which couldn’t cast lostlessly (like float32 filled with float64) (GH43424) * Fixed regression in read_csv() raising AttributeError when the file handle is an tempfile.SpooledTemporaryFile object (GH43439) * Fixed performance regression in core.window.ewm. ExponentialMovingWindow.mean() (GH42333) * Performance improvement for DataFrame.__setitem__() when the key or value is not a DataFrame, or key is not list-like (GH43274) * Fixed bug in DataFrameGroupBy.agg() and DataFrameGroupBy. transform() with engine=\"numba\" where index data was not being correctly passed into func (GH43133)- Release 1.3.2 * Performance regression in DataFrame.isin() and Series.isin() for nullable data types (GH42714) * Regression in updating values of Series using boolean index, created by using DataFrame.pop() (GH42530) * Regression in DataFrame.from_records() with empty records (GH42456) * Fixed regression in DataFrame.shift() where TypeError occurred when shifting DataFrame created by concatenation of slices and fills with values (GH42719) * Regression in DataFrame.agg() when the func argument returned lists and axis=1 (GH42727) * Regression in DataFrame.drop() does nothing if MultiIndex has duplicates and indexer is a tuple or list of tuples (GH42771) * Fixed regression where read_csv() raised a ValueError when parameters names and prefix were both set to None (GH42387) * Fixed regression in comparisons between Timestamp object and datetime64 objects outside the implementation bounds for nanosecond datetime64 (GH42794) * Fixed regression in Styler.highlight_min() and Styler. highlight_max() where pandas.NA was not successfully ignored (GH42650) * Fixed regression in concat() where copy=False was not honored in axis=1 Series concatenation (GH42501) * Regression in Series.nlargest() and Series.nsmallest() with nullable integer or float dtype (GH42816) * Fixed regression in Series.quantile() with Int64Dtype (GH42626) * Fixed regression in Series.groupby() and DataFrame.groupby() where supplying the by argument with a Series named with a tuple would incorrectly raise (GH42731) * Bug in read_excel() modifies the dtypes dictionary when reading a file with duplicate columns (GH42462) * 1D slices over extension types turn into N-dimensional slices over ExtensionArrays (GH42430) * Fixed bug in Series.rolling() and DataFrame.rolling() not calculating window bounds correctly for the first row when center=True and window is an offset that covers all the rows (GH42753) * Styler.hide_columns() now hides the index name header row as well as column headers (GH42101) * Styler.set_sticky() has amended CSS to control the column/index names and ensure the correct sticky positions (GH42537) * Bug in de-serializing datetime indexes in PYTHONOPTIMIZED mode (GH42866) * Tue Aug 17 2021 Fabian Vogt - Drop suggests of python-numba (pulls in LLVM10) and python-QtPy (pulls in Qt3D, python-qt5 is enough) to make the TW DVD fit again * Thu Aug 12 2021 Ben Greiner - Update to version 1.3.1 Fixed regressions * Pandas could not be built on PyPy (GH42355) * DataFrame constructed with an older version of pandas could not be unpickled (GH42345) * Performance regression in constructing a DataFrame from a dictionary of dictionaries (GH42248) * Fixed regression in DataFrame.agg() dropping values when the DataFrame had an Extension Array dtype, a duplicate index, and axis=1 (GH42380) * Fixed regression in DataFrame.astype() changing the order of noncontiguous data (GH42396) * Performance regression in DataFrame in reduction operations requiring casting such as DataFrame.mean() on integer data (GH38592) * Performance regression in DataFrame.to_dict() and Series.to_dict () when orient argument one of “records”, “dict”, or “split” (GH42352) * Fixed regression in indexing with a list subclass incorrectly raising TypeError (GH42433, GH42461) * Fixed regression in DataFrame.isin() and Series.isin() raising TypeError with nullable data containing at least one missing value (GH42405) * Regression in concat() between objects with bool dtype and integer dtype casting to object instead of to integer (GH42092) * Bug in Series constructor not accepting a dask.Array (GH38645) * Fixed regression for SettingWithCopyWarning displaying incorrect stacklevel (GH42570) * Fixed regression for merge_asof() raising KeyError when one of the by columns is in the index (GH34488) * Fixed regression in to_datetime() returning pd.NaT for inputs that produce duplicated values, when cache=True (GH42259) * Fixed regression in SeriesGroupBy.value_counts() that resulted in an IndexError when called on a Series with one row (GH42618) * Fixed bug in DataFrame.transpose() dropping values when the DataFrame had an Extension Array dtype and a duplicate index (GH42380) * Fixed bug in DataFrame.to_xml() raising KeyError when called with index=False and an offset index (GH42458) * Fixed bug in Styler.set_sticky() not handling index names correctly for single index columns case (GH42537) * Fixed bug in DataFrame.copy() failing to consolidate blocks in the result (GH42579) * Thu Jul 22 2021 Arun Persaud - specfile: * update requirements * README.rst ->README.md- update to version 1.3.0: * long changelog, see https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.3.0.html- changes from version 1.2.5: * Fixed regression in concat() between two DataFrame where one has an Index that is all-None and the other is DatetimeIndex incorrectly raising (GH40841) * Fixed regression in DataFrame.sum() and DataFrame.prod() when min_count and numeric_only are both given (GH41074) * Fixed regression in read_csv() when using memory_map=True with an non-UTF8 encoding (GH40986) * Fixed regression in DataFrame.replace() and Series.replace() when the values to replace is a NumPy float array (GH40371) * Fixed regression in ExcelFile() when a corrupt file is opened but not closed (GH41778) * Fixed regression in DataFrame.astype() with dtype=str failing to convert NaN in categorical columns (GH41797)- Unpack some files required for testing * Mon May 03 2021 Arun Persaud - update to version 1.2.4: * Fixed regressions + Fixed regression in DataFrame.sum() when min_count greater than the DataFrame shape was passed resulted in a ValueError (GH39738) + Fixed regression in DataFrame.to_json() raising AttributeError when run on PyPy (GH39837) + Fixed regression in (in)equality comparison of pd.NaT with a non-datetimelike numpy array returning a scalar instead of an array (GH40722) + Fixed regression in DataFrame.where() not returning a copy in the case of an all True condition (GH39595) + Fixed regression in DataFrame.replace() raising IndexError when regex was a multi-key dictionary (GH39338) + Fixed regression in repr of floats in an object column not respecting float_format when printed in the console or outputted through DataFrame.to_string(), DataFrame.to_html(), and DataFrame.to_latex() (GH40024) + Fixed regression in NumPy ufuncs such as np.add not passing through all arguments for DataFrame (GH40662) * Wed Mar 03 2021 Arun Persaud - update to version 1.2.3: * Fixed regressions + Fixed regression in to_excel() raising KeyError when giving duplicate columns with columns attribute (GH39695) + Fixed regression in nullable integer unary ops propagating mask on assignment (GH39943) + Fixed regression in DataFrame.__setitem__() not aligning DataFrame on right-hand side for boolean indexer (GH39931) + Fixed regression in to_json() failing to use compression with URL-like paths that are internally opened in binary mode or with user-provided file objects that are opened in binary mode (GH39985) + Fixed regression in Series.sort_index() and DataFrame.sort_index(), which exited with an ungraceful error when having kwarg ascending=None passed. Passing ascending=None is still considered invalid, and the improved error message suggests a proper usage (ascending must be a boolean or a list-like of boolean) (GH39434) + Fixed regression in DataFrame.transform() and Series.transform() giving incorrect column labels when passed a dictionary with a mix of list and non-list values (GH40018) * Sun Feb 14 2021 Ben Greiner - Update to version 1.2.2 * https://pandas.pydata.org/docs/whatsnew/v1.2.2.html * fixed regressions and bugfixes- Update to version 1.2.1 * https://pandas.pydata.org/docs/whatsnew/v1.2.1.html * fixed regressions and bugfixes * Calling NumPy ufuncs on non-aligned DataFrames * The deprecated attributes _AXIS_NAMES and _AXIS_NUMBERS of DataFrame and Series will no longer show up in dir or inspect. getmembers calls (GH38740) * Bumped minimum fastparquet version to 0.4.0 to avoid AttributeError from numba (GH38344) * Bumped minimum pymysql version to 0.8.1 to avoid test failures (GH38344) * Added reference to backwards incompatible check_freq arg of testing.assert_frame_equal() and testing.assert_series_equal() in pandas 1.1.0 whats new (GH34050)- Update to version 1.2.0 * https://pandas.pydata.org/docs/whatsnew/v1.2.0.html * WARNING: The xlwt package for writing old-style .xls excel files is no longer maintained. The xlrd package is now only for reading old-style .xls files. Previously, the default argument engine=None to read_excel() would result in using the xlrd engine in many cases, including new Excel 2007+ (.xlsx) files. If openpyxl is installed, many of these cases will now default to using the openpyxl engine. See the read_excel() documentation for more details. Thus, it is strongly encouraged to install openpyxl to read Excel 2007+ (.xlsx) files. Please do not report issues when using ``xlrd`` to read ``.xlsx`` files. This is no longer supported, switch to using openpyxl instead. Attempting to use the xlwt engine will raise a FutureWarning unless the option io.excel.xls.writer is set to \"xlwt\". While this option is now deprecated and will also raise a FutureWarning, it can be globally set and the warning suppressed. Users are recommended to write .xlsx files using the openpyxl engine instead. Enhancements * Optionally disallow duplicate labels * Passing arguments to fsspec backends * Support for binary file handles in to_csv * Support for short caption and table position in to_latex * Change in default floating precision for read_csv and read_table * Experimental nullable data types for float data * Index/column name preservation when aggregating * GroupBy supports EWM operations directly Deprecations * https://pandas.pydata.org/docs/whatsnew/v1.2.0.html#deprecations- Skip python36 build: New minimum supported Python is 3.7.1- Only Suggest instead of Recommend optional dependencies. Nobody wants to pull in all of those packages by default.- Remove pandas-pytest.ini- Rework test deselection- Limit to 4 pytest-xdist workers, as collection consumes a lot of memory * Fri Oct 30 2020 Arun Persaud - update to version 1.1.4: * Fixed regressions + Fixed regression in read_csv() raising a ValueError when names was of type dict_keys (GH36928) + Fixed regression in read_csv() with more than 1M rows and specifying a index_col argument (GH37094) + Fixed regression where attempting to mutate a DateOffset object would no longer raise an AttributeError (GH36940) + Fixed regression where DataFrame.agg() would fail with TypeError when passed positional arguments to be passed on to the aggregation function (GH36948). + Fixed regression in RollingGroupby with sort=False not being respected (GH36889) + Fixed regression in Series.astype() converting None to \"nan\" when casting to string (GH36904) + Fixed regression in Series.rank() method failing for read-only data (GH37290) + Fixed regression in RollingGroupby causing a segmentation fault with Index of dtype object (GH36727) + Fixed regression in DataFrame.resample(...).apply(...)() raised AttributeError when input was a DataFrame and only a Series was evaluated (GH36951) + Fixed regression in DataFrame.groupby(..).std() with nullable integer dtype (GH37415) + Fixed regression in PeriodDtype comparing both equal and unequal to its string representation (GH37265) + Fixed regression where slicing DatetimeIndex raised AssertionError on irregular time series with pd.NaT or on unsorted indices (GH36953 and GH35509) + Fixed regression in certain offsets (pd.offsets.Day() and below) no longer being hashable (GH37267) + Fixed regression in StataReader which required chunksize to be manually set when using an iterator to read a dataset (GH37280) + Fixed regression in setitem with DataFrame.iloc() which raised error when trying to set a value while filtering with a boolean list (GH36741) + Fixed regression in setitem with a Series getting aligned before setting the values (GH37427) + Fixed regression in MultiIndex.is_monotonic_increasing returning wrong results with NaN in at least one of the levels (GH37220) + Fixed regression in inplace arithmetic operation on a Series not updating the parent DataFrame (GH36373) * Bug fixes + Bug causing groupby(...).sum() and similar to not preserve metadata (GH29442) + Bug in Series.isin() and DataFrame.isin() raising a ValueError when the target was read-only (GH37174) + Bug in GroupBy.fillna() that introduced a performance regression after 1.0.5 (GH36757) + Bug in DataFrame.info() was raising a KeyError when the DataFrame has integer column names (GH37245) + Bug in DataFrameGroupby.apply() would drop a CategoricalIndex when grouped on (GH35792) * Mon Oct 05 2020 Arun Persaud - specfile: * updated cython version- update to version 1.1.3: * Development Changes + The minimum version of Cython is now the most recent bug-fix version (0.29.21) (GH36296). * Fixed regressions + Fixed regression in DataFrame.agg(), DataFrame.apply(), Series.agg(), and Series.apply() where internal suffix is exposed to the users when no relabelling is applied (GH36189) + Fixed regression in IntegerArray unary plus and minus operations raising a TypeError (GH36063) + Fixed regression when adding a timedelta_range() to a Timestamp raised a ValueError (GH35897) + Fixed regression in Series.__getitem__() incorrectly raising when the input was a tuple (GH35534) + Fixed regression in Series.__getitem__() incorrectly raising when the input was a frozenset (GH35747) + Fixed regression in modulo of Index, Series and DataFrame using numexpr using C not Python semantics (GH36047, GH36526) + Fixed regression in read_excel() with engine=\"odf\" caused UnboundLocalError in some cases where cells had nested child nodes (GH36122, GH35802) + Fixed regression in DataFrame.replace() inconsistent replace when using a float in the replace method (GH35376) + Fixed regression in Series.loc() on a Series with a MultiIndex containing Timestamp raising InvalidIndexError (GH35858) + Fixed regression in DataFrame and Series comparisons between numeric arrays and strings (GH35700, GH36377) + Fixed regression in DataFrame.apply() with raw=True and user-function returning string (GH35940) + Fixed regression when setting empty DataFrame column to a Series in preserving name of index in frame (GH36527) + Fixed regression in Period incorrect value for ordinal over the maximum timestamp (GH36430) + Fixed regression in read_table() raised ValueError when delim_whitespace was set to True (GH35958) + Fixed regression in Series.dt.normalize() when normalizing pre-epoch dates the result was shifted one day (GH36294) * Bug fixes + Bug in read_spss() where passing a pathlib.Path as path would raise a TypeError (GH33666) + Bug in Series.str.startswith() and Series.str.endswith() with category dtype not propagating na parameter (GH36241) + Bug in Series constructor where integer overflow would occur for sufficiently large scalar inputs when an index was provided (GH36291) + Bug in DataFrame.sort_values() raising an AttributeError when sorting on a key that casts column to categorical dtype (GH36383) + Bug in DataFrame.stack() raising a ValueError when stacking MultiIndex columns based on position when the levels had duplicate names (GH36353) + Bug in Series.astype() showing too much precision when casting from np.float32 to string dtype (GH36451) + Bug in Series.isin() and DataFrame.isin() when using NaN and a row length above 1,000,000 (GH22205) + Bug in cut() raising a ValueError when passed a Series of labels with ordered=False (GH36603) * Other + Reverted enhancement added in pandas-1.1.0 where timedelta_range() infers a frequency when passed start, stop, and periods (GH32377) * Sat Sep 12 2020 Arun Persaud - update to version 1.1.2: * Fixed regressions + Regression in DatetimeIndex.intersection() incorrectly raising AssertionError when intersecting against a list (GH35876) + Fix regression in updating a column inplace (e.g. using df[\'col\'].fillna(.., inplace=True)) (GH35731) + Fix regression in DataFrame.append() mixing tz-aware and tz-naive datetime columns (GH35460) + Performance regression for RangeIndex.format() (GH35712) + Regression where MultiIndex.get_loc() would return a slice spanning the full index when passed an empty list (GH35878) + Fix regression in invalid cache after an indexing operation; this can manifest when setting which does not update the data (GH35521) + Regression in DataFrame.replace() where a TypeError would be raised when attempting to replace elements of type Interval (GH35931) + Fix regression in pickle roundtrip of the closed attribute of IntervalIndex (GH35658) + Fixed regression in DataFrameGroupBy.agg() where a ValueError: buffer source array is read-only would be raised when the underlying array is read-only (GH36014) + Fixed regression in Series.groupby.rolling() number of levels of MultiIndex in input was compressed to one (GH36018) + Fixed regression in DataFrameGroupBy on an empty DataFrame (GH36197) * Bug fixes + Bug in DataFrame.eval() with object dtype column binary operations (GH35794) + Bug in Series constructor raising a TypeError when constructing sparse datetime64 dtypes (GH35762) + Bug in DataFrame.apply() with result_type=\"reduce\" returning with incorrect index (GH35683) + Bug in Series.astype() and DataFrame.astype() not respecting the errors argument when set to \"ignore\" for extension dtypes (GH35471) + Bug in DateTimeIndex.format() and PeriodIndex.format() with name=True setting the first item to \"None\" where it should be \"\" (GH35712) + Bug in Float64Index.__contains__() incorrectly raising TypeError instead of returning False (GH35788) + Bug in Series constructor incorrectly raising a TypeError when passed an ordered set (GH36044) + Bug in Series.dt.isocalendar() and DatetimeIndex.isocalendar() that returned incorrect year for certain dates (GH36032) + Bug in DataFrame indexing returning an incorrect Series in some cases when the series has been altered and a cache not invalidated (GH33675) + Bug in DataFrame.corr() causing subsequent indexing lookups to be incorrect (GH35882) + Bug in import_optional_dependency() returning incorrect package names in cases where package name is different from import name (GH35948) + Bug when setting empty DataFrame column to a Series in preserving name of index in frame (GH31368) * Other + factorize() now supports na_sentinel=None to include NaN in the uniques of the values and remove dropna keyword which was unintentionally exposed to public facing API in 1.1 version from factorize() (GH35667) + DataFrame.plot() and Series.plot() raise UserWarning about usage of FixedFormatter and FixedLocator (GH35684 and GH35945) * Sat Sep 05 2020 Arun Persaud - specfile: * updated versions of some requirements, require numpy during build * removed pandas-pr34991-npconstructor.patch, included upstream * removed sed commands that are not needed anymore * skip test to see if pandas is installed- update to version 1.1.1: * Fixed regressions + Fixed regression in CategoricalIndex.format() where, when stringified scalars had different lengths, the shorter string would be right-filled with spaces, so it had the same length as the longest string (GH35439) + Fixed regression in Series.truncate() when trying to truncate a single-element series (GH35544) + Fixed regression where DataFrame.to_numpy() would raise a RuntimeError for mixed dtypes when converting to str (GH35455) + Fixed regression where read_csv() would raise a ValueError when pandas.options.mode.use_inf_as_na was set to True (GH35493) + Fixed regression where pandas.testing.assert_series_equal() would raise an error when non-numeric dtypes were passed with check_exact=True (GH35446) + Fixed regression in .groupby(..).rolling(..) where column selection was ignored (GH35486) + Fixed regression where DataFrame.interpolate() would raise a TypeError when the DataFrame was empty (GH35598) + Fixed regression in DataFrame.shift() with axis=1 and heterogeneous dtypes (GH35488) + Fixed regression in DataFrame.diff() with read-only data (GH35559) + Fixed regression in .groupby(..).rolling(..) where a segfault would occur with center=True and an odd number of values (GH35552) + Fixed regression in DataFrame.apply() where functions that altered the input in-place only operated on a single row (GH35462) + Fixed regression in DataFrame.reset_index() would raise a ValueError on empty DataFrame with a MultiIndex with a datetime64 dtype level (GH35606, GH35657) + Fixed regression where pandas.merge_asof() would raise a UnboundLocalError when left_index, right_index and tolerance were set (GH35558) + Fixed regression in .groupby(..).rolling(..) where a custom BaseIndexer would be ignored (GH35557) + Fixed regression in DataFrame.replace() and Series.replace() where compiled regular expressions would be ignored during replacement (GH35680) + Fixed regression in aggregate() where a list of functions would produce the wrong results if at least one of the functions did not aggregate (GH35490) + Fixed memory usage issue when instantiating large pandas.arrays.StringArray (GH35499) * Bug fixes + Bug in Styler whereby cell_ids argument had no effect due to other recent changes (GH35588) (GH35663) + Bug in pandas.testing.assert_series_equal() and pandas.testing.assert_frame_equal() where extension dtypes were not ignored when check_dtypes was set to False (GH35715) + Bug in to_timedelta() fails when arg is a Series with Int64 dtype containing null values (GH35574) + Bug in .groupby(..).rolling(..) where passing closed with column selection would raise a ValueError (GH35549) + Bug in DataFrame constructor failing to raise ValueError in some cases when data and index have mismatched lengths (GH33437)- changes from version 1.1.0: * Enhancements + KeyErrors raised by loc specify missing labels + All dtypes can now be converted to \"StringDtype\" + Non-monotonic PeriodIndex Partial String Slicing + Comparing two `DataFrame` or two `Series` and summarizing the differences + Allow NA in groupby key + Sorting with keys + Fold argument support in Timestamp constructor + Parsing timezone-aware format with different timezones in to_datetime + Grouper and resample now supports the arguments origin and offset + fsspec now used for filesystem handling * see https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.1.0.html for complete list * Wed Jul 22 2020 Benjamin Greiner - support newest numpy by removing old test gh#pandas-dev/pandas#34991 pandas-pr34991-npconstructor.patch- move testing to multibuild flavor- run slow tests only on x86_64- replace gcc10-skip-one-test.patch with pytest -k deselection- tidy SKIP_TESTS declarations- add pandas-pytest.ini as pytest.ini in order to support the custom marks and filter some warnings- remove random hash seed * Tue Jun 30 2020 Matej Cepl - Skip test_raw_roundtrip on i586 * Wed Jun 24 2020 Todd R - Update to version 1.0.5 * Fixed regressions + Fix regression in read_parquet() when reading from file-like objects (GH34467). + Fix regression in reading from public S3 buckets (GH34626). Note this disables the ability to read Parquet files from directories on S3 again (GH26388, GH34632), which was added in the 1.0.4 release, but is now targeted for pandas 1.1.0. + Fixed regression in replace() raising an AssertionError when replacing values in an extension dtype with values of a different dtype (GH34530) * Bug fixes + Fixed building from source with Python 3.8 fetching the wrong version of NumPy * Sat May 30 2020 Arun Persaud - update to version 1.0.4: * Fixed regressions + Fix regression where :meth:`Series.isna` and :meth:`DataFrame.isna` would raise for categorical dtype when pandas.options.mode.use_inf_as_na was set to True (:issue:`33594`) + Fix regression in :meth:`GroupBy.first` and :meth:`GroupBy.last` where None is not preserved in object dtype (:issue:`32800`) + Fix regression in DataFrame reductions using numeric_only=True and ExtensionArrays (:issue:`33256`). + Fix performance regression in memory_usage(deep=True) for object dtype (:issue:`33012`) + Fix regression where :meth:`Categorical.replace` would replace with NaN whenever the new value and replacement value were equal (:issue:`33288`) + Fix regression where an ordered :class:`Categorical` containing only NaN values would raise rather than returning NaN when taking the minimum or maximum (:issue:`33450`) + Fix regression in :meth:`DataFrameGroupBy.agg` with dictionary input losing ExtensionArray dtypes (:issue:`32194`) + Fix to preserve the ability to index with the \"nearest\" method with xarray\'s CFTimeIndex, an :class:`Index` subclass (pydata/xarray#3751, :issue:`32905`). + Fix regression in :meth:`DataFrame.describe` raising TypeError: unhashable type: \'dict\' (:issue:`32409`) + Fix regression in :meth:`DataFrame.replace` casts columns to object dtype if items in to_replace not in values (:issue:`32988`) + Fix regression in :meth:`Series.groupby` would raise ValueError when grouping by :class:`PeriodIndex` level (:issue:`34010`) + Fix regression in :meth:`GroupBy.rolling.apply` ignores args and kwargs parameters (:issue:`33433`) + Fix regression in error message with np.min or np.max on unordered :class:`Categorical` (:issue:`33115`) + Fix regression in :meth:`DataFrame.loc` and :meth:`Series.loc` throwing an error when a datetime64[ns, tz] value is provided (:issue:`32395`) * Bug fixes + Bug in :meth:`SeriesGroupBy.first`, :meth:`SeriesGroupBy.last`, :meth:`SeriesGroupBy.min`, and :meth:`SeriesGroupBy.max` returning floats when applied to nullable Booleans (:issue:`33071`) + Bug in :meth:`Rolling.min` and :meth:`Rolling.max`: Growing memory usage after multiple calls when using a fixed window (:issue:`30726`) + Bug in :meth:`~DataFrame.to_parquet` was not raising PermissionError when writing to a private s3 bucket with invalid creds. (:issue:`27679`) + Bug in :meth:`~DataFrame.to_csv` was silently failing when writing to an invalid s3 bucket. (:issue:`32486`) + Bug in :meth:`read_parquet` was raising a FileNotFoundError when passed an s3 directory path. (:issue:`26388`) + Bug in :meth:`~DataFrame.to_parquet` was throwing an AttributeError when writing a partitioned parquet file to s3 (:issue:`27596`) + Bug in :meth:`GroupBy.quantile` causes the quantiles to be shifted when the by axis contains NaN (:issue:`33200`, :issue:`33569`) * Mon May 25 2020 Martin Liška - Add gcc10-skip-one-test.patch in order to fix a failing test-case on i586. * Sat Mar 28 2020 Arun Persaud - update to 1.0.3: * Fixed regressions + Fixed regression in resample.agg when the underlying data is non-writeable (GH31710) + Fixed regression in DataFrame exponentiation with reindexing (GH32685)- Increase memory _constraints to 8GB RAM. * Mon Mar 16 2020 Tomáš Chvátal - Skip i586 failing tests with upstream ticket * Fri Mar 13 2020 Hans-Peter Jansen - Update to 1.0.2: * see https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.0.2.html- Add pyperclip and Jinja2 as test dependencies * Mon Mar 09 2020 Dirk Mueller - Update to 1.0.1: * see https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.0.1.html * see https://pandas.pydata.org/pandas-docs/stable/whatsnew/v1.0.0.html * Tue Jan 14 2020 Tomáš Chvátal - Skip one test that fails on 32bit: test_encode_non_c_locale * Mon Nov 11 2019 Steve Kowalik - Update to version 0.25.3 + Support Python 3.8 + Bug fixes > Indexing * Fix regression in DataFrame.reindex() not following the limit argument * Fix regression in RangeIndex.get_indexer() for decreasing RangeIndex where target values may be improperly identified as missing/present > I/O * Fix regression in notebook display where tags were missing for DataFrame.index values * Regression in to_csv() where writing a Series or DataFrame indexed by an IntervalIndex would incorrectly raise a TypeError * Fix to_csv() with ExtensionArray with list-like values > Groupby/resample/rolling * Bug incorrectly raising an IndexError when passing a list of quantiles to pandas.core.groupby.DataFrameGroupBy.quantile() * Bug in pandas.core.groupby.GroupBy.shift(), pandas.core.groupby.GroupBy.bfill() and pandas.core.groupby.GroupBy.ffill() where timezone information would be dropped * Bug in DataFrameGroupBy.quantile() where NA values in the grouping could cause segfaults or incorrect results * Fri Sep 20 2019 Tomáš Chvátal - Use xdist to run tests in threads, it takes ages otherwise * Wed Aug 28 2019 Todd R - Update to version 0.25.1 + Bug fixes > Categorical * Bug in :meth:`Categorical.fillna` that would replace all values, not just those that are ``NaN`` > Datetimelike * Bug in :func:`to_datetime` where passing a timezone-naive :class:`DatetimeArray` or :class:`DatetimeIndex` and ``utc=True`` would incorrectly return a timezone-naive result * Bug in :meth:`Period.to_timestamp` where a :class:`Period` outside the :class:`Timestamp` implementation bounds (roughly 1677-09-21 to 2262-04-11) would return an incorrect :class:`Timestamp` instead of raising ``OutOfBoundsDatetime`` * Bug in iterating over :class:`DatetimeIndex` when the underlying data is read-only > Timezones * Bug in :class:`Index` where a numpy object array with a timezone aware :class:`Timestamp` and ``np.nan`` would not return a :class:`DatetimeIndex` > Numeric * Bug in :meth:`Series.interpolate` when using a timezone aware :class:`DatetimeIndex` * Bug when printing negative floating point complex numbers would raise an ``IndexError`` * Bug where :class:`DataFrame` arithmetic operators such as :meth:`DataFrame.mul` with a :class:`Series` with axis=1 would raise an ``AttributeError`` on :class:`DataFrame` larger than the minimum threshold to invoke numexpr * Bug in :class:`DataFrame` arithmetic where missing values in results were incorrectly masked with ``NaN`` instead of ``Inf`` > Conversion * Improved the warnings for the deprecated methods :meth:`Series.real` and :meth:`Series.imag` > Interval * Bug in :class:`IntervalIndex` where `dir(obj)` would raise ``ValueError`` > Indexing * Bug in partial-string indexing returning a NumPy array rather than a ``Series`` when indexing with a scalar like ``.loc[\'2015\']`` * Break reference cycle involving :class:`Index` and other index classes to allow garbage collection of index objects without running the GC. * Fix regression in assigning values to a single column of a DataFrame with a ``MultiIndex`` columns. * Fix regression in ``.ix`` fallback with an ``IntervalIndex``. > Missing * Bug in :func:`pandas.isnull` or :func:`pandas.isna` when the input is a type e.g. ``type(pandas.Series())`` > I/O * Avoid calling ``S3File.s3`` when reading parquet, as this was removed in s3fs version 0.3.0 * Better error message when a negative header is passed in :func:`pandas.read_csv` * Follow the ``min_rows`` display option (introduced in v0.25.0) correctly in the HTML repr in the notebook. > Plotting * Added a ``pandas_plotting_backends`` entrypoint group for registering plot backends. See :ref:`extending.plotting-backends` for more. * Fixed the re-instatement of Matplotlib datetime converters after calling :meth:`pandas.plotting.deregister_matplotlib_converters`. * Fix compatibility issue with matplotlib when passing a pandas ``Index`` to a plot call. > Groupby/resample/rolling * Fixed regression in :meth:`pands.core.groupby.DataFrameGroupBy.quantile` raising when multiple quantiles are given * Bug in :meth:`pandas.core.groupby.DataFrameGroupBy.transform` where applying a timezone conversion lambda function would drop timezone information * Bug in :meth:`pandas.core.groupby.GroupBy.nth` where ``observed=False`` was being ignored for Categorical groupers * Bug in windowing over read-only arrays * Fixed segfault in `pandas.core.groupby.DataFrameGroupBy.quantile` when an invalid quantile was passed > Reshaping * A ``KeyError`` is now raised if ``.unstack()`` is called on a :class:`Series` or :class:`DataFrame` with a flat :class:`Index` passing a name which is not the correct one * Bug :meth:`merge_asof` could not merge :class:`Timedelta` objects when passing `tolerance` kwarg * Bug in :meth:`DataFrame.crosstab` when ``margins`` set to ``True`` and ``normalize`` is not ``False``, an error is raised. * :meth:`DataFrame.join` now suppresses the ``FutureWarning`` when the sort parameter is specified * Bug in :meth:`DataFrame.join` raising with readonly arrays > Sparse * Bug in reductions for :class:`Series` with Sparse dtypes > Other * Bug in :meth:`Series.replace` and :meth:`DataFrame.replace` when replacing timezone-aware timestamps using a dict-like replacer * Bug in :meth:`Series.rename` when using a custom type indexer. Now any value that isn\'t callable or dict-like is treated as a scalar. * Mon Jul 22 2019 Todd R - Update to Version 0.25.0 + Warning * Starting with the 0.25.x series of releases, pandas only supports Python 3.5.3 and higher. * The minimum supported Python version will be bumped to 3.6 in a future release. * Panel has been fully removed. For N-D labeled data structures, please use xarray * read_pickle read_msgpack are only guaranteed backwards compatible back to pandas version 0.20.3 + Enhancements * Groupby aggregation with relabeling Pandas has added special groupby behavior, known as \"named aggregation\", for naming the output columns when applying multiple aggregation functions to specific columns. * Groupby Aggregation with multiple lambdas You can now provide multiple lambda functions to a list-like aggregation in pandas.core.groupby.GroupBy.agg. * Better repr for MultiIndex Printing of MultiIndex instances now shows tuples of each row and ensures that the tuple items are vertically aligned, so it\'s now easier to understand the structure of the MultiIndex. * Shorter truncated repr for Series and DataFrame Currently, the default display options of pandas ensure that when a Series or DataFrame has more than 60 rows, its repr gets truncated to this maximum of 60 rows (the display.max_rows option). However, this still gives a repr that takes up a large part of the vertical screen estate. Therefore, a new option display.min_rows is introduced with a default of 10 which determines the number of rows showed in the truncated repr: * Json normalize with max_level param support json_normalize normalizes the provided input dict to all nested levels. The new max_level parameter provides more control over which level to end normalization. * Series.explode to split list-like values to rows Series and DataFrame have gained the DataFrame.explode methods to transform list-likes to individual rows. * DataFrame.plot keywords logy, logx and loglog can now accept the value \'sym\' for symlog scaling. * Added support for ISO week year format (\'%G-%V-%u\') when parsing datetimes using to_datetime * Indexing of DataFrame and Series now accepts zerodim np.ndarray * Timestamp.replace now supports the fold argument to disambiguate DST transition times * DataFrame.at_time and Series.at_time now support datetime.time objects with timezones * DataFrame.pivot_table now accepts an observed parameter which is passed to underlying calls to DataFrame.groupby to speed up grouping categorical data. * Series.str has gained Series.str.casefold method to removes all case distinctions present in a string * DataFrame.set_index now works for instances of abc.Iterator, provided their output is of the same length as the calling frame * DatetimeIndex.union now supports the sort argument. The behavior of the sort parameter matches that of Index.union * RangeIndex.union now supports the sort argument. If sort=False an unsorted Int64Index is always returned. sort=None is the default and returns a monotonically increasing RangeIndex if possible or a sorted Int64Index if not * TimedeltaIndex.intersection now also supports the sort keyword * DataFrame.rename now supports the errors argument to raise errors when attempting to rename nonexistent keys * Added api.frame.sparse for working with a DataFrame whose values are sparse * RangeIndex has gained ~RangeIndex.start, ~RangeIndex.stop, and ~RangeIndex.step attributes * datetime.timezone objects are now supported as arguments to timezone methods and constructors * DataFrame.query and DataFrame.eval now supports quoting column names with backticks to refer to names with spaces * merge_asof now gives a more clear error message when merge keys are categoricals that are not equal * pandas.core.window.Rolling supports exponential (or Poisson) window type * Error message for missing required imports now includes the original import error\'s text * DatetimeIndex and TimedeltaIndex now have a mean method * DataFrame.describe now formats integer percentiles without decimal point * Added support for reading SPSS .sav files using read_spss * Added new option plotting.backend to be able to select a plotting backend different than the existing matplotlib one. Use pandas.set_option(\'plotting.backend\', \'\') where * pandas.offsets.BusinessHour supports multiple opening hours intervals * read_excel can now use openpyxl to read Excel files via the engine=\'openpyxl\' argument. This will become the default in a future release * pandas.io.excel.read_excel supports reading OpenDocument tables. Specify engine=\'odf\' to enable. Consult the IO User Guide for more details * Interval, IntervalIndex, and ~arrays.IntervalArray have gained an ~Interval.is_empty attribute denoting if the given interval(s) are empty + Backwards incompatible API changes * Indexing with date strings with UTC offsets Indexing a DataFrame or Series with a DatetimeIndex with a date string with a UTC offset would previously ignore the UTC offset. Now, the UTC offset is respected in indexing. * MultiIndex constructed from levels and codes Constructing a MultiIndex with NaN levels or codes value < -1 was allowed previously. Now, construction with codes value < -1 is not allowed and NaN levels\' corresponding codes would be reassigned as -1. * Groupby.apply on DataFrame evaluates first group only once The implementation of DataFrameGroupBy.apply() previously evaluated the supplied function consistently twice on the first group to infer if it is safe to use a fast code path. Particularly for functions with side effects, this was an undesired behavior and may have led to surprises. * Concatenating sparse values When passed DataFrames whose values are sparse, concat will now return a Series or DataFrame with sparse values, rather than a SparseDataFrame . * The .str-accessor performs stricter type checks Due to the lack of more fine-grained dtypes, Series.str so far only checked whether the data was of object dtype. Series.str will now infer the dtype data *within * the Series; in particular, \'bytes\'-only data will raise an exception (except for Series.str.decode, Series.str.get, Series.str.len, Series.str.slice). * Categorical dtypes are preserved during groupby Previously, columns that were categorical, but not the groupby key(s) would be converted to object dtype during groupby operations. Pandas now will preserve these dtypes. * Incompatible Index type unions When performing Index.union operations between objects of incompatible dtypes, the result will be a base Index of dtype object. This behavior holds true for unions between Index objects that previously would have been prohibited. The dtype of empty Index objects will now be evaluated before performing union operations rather than simply returning the other Index object. Index.union can now be considered commutative, such that A.union(B) == B.union(A) . * DataFrame groupby ffill/bfill no longer return group labels The methods ffill, bfill, pad and backfill of DataFrameGroupBy previously included the group labels in the return value, which was inconsistent with other groupby transforms. Now only the filled values are returned. * DataFrame describe on an empty categorical / object column will return top and freq When calling DataFrame.describe with an empty categorical / object column, the \'top\' and \'freq\' columns were previously omitted, which was inconsistent with the output for non-empty columns. Now the \'top\' and \'freq\' columns will always be included, with numpy.nan in the case of an empty DataFrame * __str__ methods now call __repr__ rather than vice versa Pandas has until now mostly defined string representations in a Pandas objects\'s __str__/__unicode__/__bytes__ methods, and called __str__ from the __repr__ method, if a specific __repr__ method is not found. This is not needed for Python3. In Pandas 0.25, the string representations of Pandas objects are now generally defined in __repr__, and calls to __str__ in general now pass the call on to the __repr__, if a specific __str__ method doesn\'t exist, as is standard for Python. This change is backward compatible for direct usage of Pandas, but if you subclass Pandas objects *and * give your subclasses specific __str__/__repr__ methods, you may have to adjust your __str__/__repr__ methods . * Indexing an IntervalIndex with Interval objects Indexing methods for IntervalIndex have been modified to require exact matches only for Interval queries. IntervalIndex methods previously matched on any overlapping Interval. Behavior with scalar points, e.g. querying with an integer, is unchanged . * Binary ufuncs on Series now align Applying a binary ufunc like numpy.power now aligns the inputs when both are Series . * Categorical.argsort now places missing values at the end Categorical.argsort now places missing values at the end of the array, making it consistent with NumPy and the rest of pandas . * Column order is preserved when passing a list of dicts to DataFrame Starting with Python 3.7 the key-order of dict is guaranteed _. In practice, this has been true since Python 3.6. The DataFrame constructor now treats a list of dicts in the same way as it does a list of OrderedDict, i.e. preserving the order of the dicts. This change applies only when pandas is running on Python>=3.6 . * Increased minimum versions for dependencies * DatetimeTZDtype will now standardize pytz timezones to a common timezone instance * Timestamp and Timedelta scalars now implement the to_numpy method as aliases to Timestamp.to_datetime64 and Timedelta.to_timedelta64, respectively. * Timestamp.strptime will now rise a NotImplementedError * Comparing Timestamp with unsupported objects now returns :pyNotImplemented instead of raising TypeError. This implies that unsupported rich comparisons are delegated to the other object, and are now consistent with Python 3 behavior for datetime objects * Bug in DatetimeIndex.snap which didn\'t preserving the name of the input Index * The arg argument in pandas.core.groupby.DataFrameGroupBy.agg has been renamed to func * The arg argument in pandas.core.window._Window.aggregate has been renamed to func * Most Pandas classes had a __bytes__ method, which was used for getting a python2-style bytestring representation of the object. This method has been removed as a part of dropping Python2 * The .str-accessor has been disabled for 1-level MultiIndex, use MultiIndex.to_flat_index if necessary * Removed support of gtk package for clipboards * Using an unsupported version of Beautiful Soup 4 will now raise an ImportError instead of a ValueError * Series.to_excel and DataFrame.to_excel will now raise a ValueError when saving timezone aware data. * ExtensionArray.argsort places NA values at the end of the sorted array. * DataFrame.to_hdf and Series.to_hdf will now raise a NotImplementedError when saving a MultiIndex with extention data types for a fixed format. * Passing duplicate names in read_csv will now raise a ValueError + Deprecations * Sparse subclasses The SparseSeries and SparseDataFrame subclasses are deprecated. Their functionality is better-provided by a Series or DataFrame with sparse values. * msgpack format The msgpack format is deprecated as of 0.25 and will be removed in a future version. It is recommended to use pyarrow for on-the-wire transmission of pandas objects. * The deprecated .ix[] indexer now raises a more visible FutureWarning instead of DeprecationWarning . * Deprecated the units=M (months) and units=Y (year) parameters for units of pandas.to_timedelta, pandas.Timedelta and pandas.TimedeltaIndex * pandas.concat has deprecated the join_axes-keyword. Instead, use DataFrame.reindex or DataFrame.reindex_like on the result or on the inputs * The SparseArray.values attribute is deprecated. You can use np.asarray(...) or the SparseArray.to_dense method instead . * The functions pandas.to_datetime and pandas.to_timedelta have deprecated the box keyword. Instead, use to_numpy or Timestamp.to_datetime64 or Timedelta.to_timedelta64. * The DataFrame.compound and Series.compound methods are deprecated and will be removed in a future version . * The internal attributes _start, _stop and _step attributes of RangeIndex have been deprecated. Use the public attributes ~RangeIndex.start, ~RangeIndex.stop and ~RangeIndex.step instead . * The Series.ftype, Series.ftypes and DataFrame.ftypes methods are deprecated and will be removed in a future version. Instead, use Series.dtype and DataFrame.dtypes . * The Series.get_values, DataFrame.get_values, Index.get_values, SparseArray.get_values and Categorical.get_values methods are deprecated. One of np.asarray(..) or ~Series.to_numpy can be used instead . * The \'outer\' method on NumPy ufuncs, e.g. np.subtract.outer has been deprecated on Series objects. Convert the input to an array with Series.array first * Timedelta.resolution is deprecated and replaced with Timedelta.resolution_string. In a future version, Timedelta.resolution will be changed to behave like the standard library datetime.timedelta.resolution * read_table has been undeprecated. * Index.dtype_str is deprecated. * Series.imag and Series.real are deprecated. * Series.put is deprecated. * Index.item and Series.item is deprecated. * The default value ordered=None in ~pandas.api.types.CategoricalDtype has been deprecated in favor of ordered=False. When converting between categorical types ordered=True must be explicitly passed in order to be preserved. * Index.contains is deprecated. Use key in index (__contains__) instead . * DataFrame.get_dtype_counts is deprecated. * Categorical.ravel will return a Categorical instead of a np.ndarray + Removal of prior version deprecations/changes * Removed Panel * Removed the previously deprecated sheetname keyword in read_excel * Removed the previously deprecated TimeGrouper * Removed the previously deprecated parse_cols keyword in read_excel * Removed the previously deprecated pd.options.html.border * Removed the previously deprecated convert_objects * Removed the previously deprecated select method of DataFrame and Series * Removed the previously deprecated behavior of Series treated as list-like in ~Series.cat.rename_categories * Removed the previously deprecated DataFrame.reindex_axis and Series.reindex_axis * Removed the previously deprecated behavior of altering column or index labels with Series.rename_axis or DataFrame.rename_axis * Removed the previously deprecated tupleize_cols keyword argument in read_html, read_csv, and DataFrame.to_csv * Removed the previously deprecated DataFrame.from.csv and Series.from_csv * Removed the previously deprecated raise_on_error keyword argument in DataFrame.where and DataFrame.mask * Removed the previously deprecated ordered and categories keyword arguments in astype * Removed the previously deprecated cdate_range * Removed the previously deprecated True option for the dropna keyword argument in SeriesGroupBy.nth * Removed the previously deprecated convert keyword argument in Series.take and DataFrame.take + Performance improvements * Significant speedup in SparseArray initialization that benefits most operations, fixing performance regression introduced in v0.20.0 * DataFrame.to_stata() is now faster when outputting data with any string or non-native endian columns * Improved performance of Series.searchsorted. The speedup is especially large when the dtype is int8/int16/int32 and the searched key is within the integer bounds for the dtype * Improved performance of pandas.core.groupby.GroupBy.quantile * Improved performance of slicing and other selected operation on a RangeIndex * RangeIndex now performs standard lookup without instantiating an actual hashtable, hence saving memory * Improved performance of read_csv by faster tokenizing and faster parsing of small float numbers * Improved performance of read_csv by faster parsing of N/A and boolean values * Improved performance of IntervalIndex.is_monotonic, IntervalIndex.is_monotonic_increasing and IntervalIndex.is_monotonic_decreasing by removing conversion to MultiIndex * Improved performance of DataFrame.to_csv when writing datetime dtypes * Improved performance of read_csv by much faster parsing of MM/YYYY and DD/MM/YYYY datetime formats * Improved performance of nanops for dtypes that cannot store NaNs. Speedup is particularly prominent for Series.all and Series.any * Improved performance of Series.map for dictionary mappers on categorical series by mapping the categories instead of mapping all values * Improved performance of IntervalIndex.intersection * Improved performance of read_csv by faster concatenating date columns without extra conversion to string for integer/float zero and float NaN; by faster checking the string for the possibility of being a date * Improved performance of IntervalIndex.is_unique by removing conversion to MultiIndex * Restored performance of DatetimeIndex.__iter__ by re-enabling specialized code path * Improved performance when building MultiIndex with at least one CategoricalIndex level * Improved performance by removing the need for a garbage collect when checking for SettingWithCopyWarning * For to_datetime changed default value of cache parameter to True * Improved performance of DatetimeIndex and PeriodIndex slicing given non-unique, monotonic data . * Improved performance of pd.read_json for index-oriented data. * Improved performance of MultiIndex.shape . + Bug fixes > Categorical * Bug in DataFrame.at and Series.at that would raise exception if the index was a CategoricalIndex * Fixed bug in comparison of ordered Categorical that contained missing values with a scalar which sometimes incorrectly resulted in True * Bug in DataFrame.dropna when the DataFrame has a CategoricalIndex containing Interval objects incorrectly raised a TypeError > Datetimelike * Bug in to_datetime which would raise an (incorrect) ValueError when called with a date far into the future and the format argument specified instead of raising OutOfBoundsDatetime * Bug in to_datetime which would raise InvalidIndexError: Reindexing only valid with uniquely valued Index objects when called with cache=True, with arg including at least two different elements from the set {None, numpy.nan, pandas.NaT} * Bug in DataFrame and Series where timezone aware data with dtype=\'datetime64[ns] was not cast to naive * Improved Timestamp type checking in various datetime functions to prevent exceptions when using a subclassed datetime * Bug in Series and DataFrame repr where np.datetime64(\'NaT\') and np.timedelta64(\'NaT\') with dtype=object would be represented as NaN * Bug in to_datetime which does not replace the invalid argument with NaT when error is set to coerce * Bug in adding DateOffset with nonzero month to DatetimeIndex would raise ValueError * Bug in to_datetime which raises unhandled OverflowError when called with mix of invalid dates and NaN values with format=\'%Y%m%d\' and error=\'coerce\' * Bug in isin for datetimelike indexes; DatetimeIndex, TimedeltaIndex and PeriodIndex where the levels parameter was ignored. * Bug in to_datetime which raises TypeError for format=\'%Y%m%d\' when called for invalid integer dates with length >= 6 digits with errors=\'ignore\' * Bug when comparing a PeriodIndex against a zero-dimensional numpy array * Bug in constructing a Series or DataFrame from a numpy datetime64 array with a non-ns unit and out-of-bound timestamps generating rubbish data, which will now correctly raise an OutOfBoundsDatetime error . * Bug in date_range with unnecessary OverflowError being raised for very large or very small dates * Bug where adding Timestamp to a np.timedelta64 object would raise instead of returning a Timestamp * Bug where comparing a zero-dimensional numpy array containing a np.datetime64 object to a Timestamp would incorrect raise TypeError * Bug in to_datetime which would raise ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True when called with cache=True, with arg including datetime strings with different offset > Timedelta * Bug in TimedeltaIndex.intersection where for non-monotonic indices in some cases an empty Index was returned when in fact an intersection existed * Bug with comparisons between Timedelta and NaT raising TypeError * Bug when adding or subtracting a BusinessHour to a Timestamp with the resulting time landing in a following or prior day respectively * Bug when comparing a TimedeltaIndex against a zero-dimensional numpy array > Timezones * Bug in DatetimeIndex.to_frame where timezone aware data would be converted to timezone naive data * Bug in to_datetime with utc=True and datetime strings that would apply previously parsed UTC offsets to subsequent arguments * Bug in Timestamp.tz_localize and Timestamp.tz_convert does not propagate freq * Bug in Series.at where setting Timestamp with timezone raises TypeError * Bug in DataFrame.update when updating with timezone aware data would return timezone naive data * Bug in to_datetime where an uninformative RuntimeError was raised when passing a naive Timestamp with datetime strings with mixed UTC offsets * Bug in to_datetime with unit=\'ns\' would drop timezone information from the parsed argument * Bug in DataFrame.join where joining a timezone aware index with a timezone aware column would result in a column of NaN * Bug in date_range where ambiguous or nonexistent start or end times were not handled by the ambiguous or nonexistent keywords respectively * Bug in DatetimeIndex.union when combining a timezone aware and timezone unaware DatetimeIndex * Bug when applying a numpy reduction function (e.g. numpy.minimum) to a timezone aware Series > Numeric * Bug in to_numeric in which large negative numbers were being improperly handled * Bug in to_numeric in which numbers were being coerced to float, even though errors was not coerce * Bug in to_numeric in which invalid values for errors were being allowed * Bug in format in which floating point complex numbers were not being formatted to proper display precision and trimming * Bug in error messages in DataFrame.corr and Series.corr. Added the possibility of using a callable. * Bug in Series.divmod and Series.rdivmod which would raise an (incorrect) ValueError rather than return a pair of Series objects as result * Raises a helpful exception when a non-numeric index is sent to interpolate with methods which require numeric index. * Bug in ~pandas.eval when comparing floats with scalar operators, for example: x < -0.1 * Fixed bug where casting all-boolean array to integer extension array failed * Bug in divmod with a Series object containing zeros incorrectly raising AttributeError * Inconsistency in Series floor-division (//) and divmod filling positive//zero with NaN instead of Inf > Conversion * Bug in DataFrame.astype() when passing a dict of columns and types the errors parameter was ignored. > Strings * Bug in the __name__ attribute of several methods of Series.str, which were set incorrectly * Improved error message when passing Series of wrong dtype to Series.str.cat > Interval * Construction of Interval is restricted to numeric, Timestamp and Timedelta endpoints * Fixed bug in Series/DataFrame not displaying NaN in IntervalIndex with missing values * Bug in IntervalIndex.get_loc where a KeyError would be incorrectly raised for a decreasing IntervalIndex * Bug in Index constructor where passing mixed closed Interval objects would result in a ValueError instead of an object dtype Index > Indexing * Improved exception message when calling DataFrame.iloc with a list of non-numeric objects . * Improved exception message when calling .iloc or .loc with a boolean indexer with different length . * Bug in KeyError exception message when indexing a MultiIndex with a non-existant key not displaying the original key . * Bug in .iloc and .loc with a boolean indexer not raising an IndexError when too few items are passed . * Bug in DataFrame.loc and Series.loc where KeyError was not raised for a MultiIndex when the key was less than or equal to the number of levels in the MultiIndex . * Bug in which DataFrame.append produced an erroneous warning indicating that a KeyError will be thrown in the future when the data to be appended contains new columns . * Bug in which DataFrame.to_csv caused a segfault for a reindexed data frame, when the indices were single-level MultiIndex . * Fixed bug where assigning a arrays.PandasArray to a pandas.core.frame.DataFrame would raise error * Allow keyword arguments for callable local reference used in the DataFrame.query string * Fixed a KeyError when indexing a MultiIndex` level with a list containing exactly one label, which is missing * Bug which produced AttributeError on partial matching Timestamp in a MultiIndex * Bug in Categorical and CategoricalIndex with Interval values when using the in operator (__contains) with objects that are not comparable to the values in the Interval * Bug in DataFrame.loc and DataFrame.iloc on a DataFrame with a single timezone-aware datetime64[ns] column incorrectly returning a scalar instead of a Series * Bug in CategoricalIndex and Categorical incorrectly raising ValueError instead of TypeError when a list is passed using the in operator (__contains__) * Bug in setting a new value in a Series with a Timedelta object incorrectly casting the value to an integer * Bug in Series setting a new key (__setitem__) with a timezone-aware datetime incorrectly raising ValueError * Bug in DataFrame.iloc when indexing with a read-only indexer * Bug in Series setting an existing tuple key (__setitem__) with timezone-aware datetime values incorrectly raising TypeError > Missing * Fixed misleading exception message in Series.interpolate if argument order is required, but omitted . * Fixed class type displayed in exception message in DataFrame.dropna if invalid axis parameter passed * A ValueError will now be thrown by DataFrame.fillna when limit is not a positive integer > MultiIndex * Bug in which incorrect exception raised by Timedelta when testing the membership of MultiIndex > I/O * Bug in DataFrame.to_html() where values were truncated using display options instead of outputting the full content * Fixed bug in missing text when using to_clipboard if copying utf-16 characters in Python 3 on Windows * Bug in read_json for orient=\'table\' when it tries to infer dtypes by default, which is not applicable as dtypes are already defined in the JSON schema * Bug in read_json for orient=\'table\' and float index, as it infers index dtype by default, which is not applicable because index dtype is already defined in the JSON schema * Bug in read_json for orient=\'table\' and string of float column names, as it makes a column name type conversion to Timestamp, which is not applicable because column names are already defined in the JSON schema * Bug in json_normalize for errors=\'ignore\' where missing values in the input data, were filled in resulting DataFrame with the string \"nan\" instead of numpy.nan * DataFrame.to_html now raises TypeError when using an invalid type for the classes parameter instead of AssertionError * Bug in DataFrame.to_string and DataFrame.to_latex that would lead to incorrect output when the header keyword is used * Bug in read_csv not properly interpreting the UTF8 encoded filenames on Windows on Python 3.6+ * Improved performance in pandas.read_stata and pandas.io.stata.StataReader when converting columns that have missing values * Bug in DataFrame.to_html where header numbers would ignore display options when rounding * Bug in read_hdf where reading a table from an HDF5 file written directly with PyTables fails with a ValueError when using a sub-selection via the start or stop arguments * Bug in read_hdf not properly closing store after a KeyError is raised * Improved the explanation for the failure when value labels are repeated in Stata dta files and suggested work-arounds * Improved pandas.read_stata and pandas.io.stata.StataReader to read incorrectly formatted 118 format files saved by Stata * Improved the col_space parameter in DataFrame.to_html to accept a string so CSS length values can be set correctly * Fixed bug in loading objects from S3 that contain # characters in the URL * Adds use_bqstorage_api parameter to read_gbq to speed up downloads of large data frames. This feature requires version 0.10.0 of the pandas-gbq library as well as the google-cloud-bigquery-storage and fastavro libraries. * Fixed memory leak in DataFrame.to_json when dealing with numeric data * Bug in read_json where date strings with Z were not converted to a UTC timezone * Added cache_dates=True parameter to read_csv, which allows to cache unique dates when they are parsed * DataFrame.to_excel now raises a ValueError when the caller\'s dimensions exceed the limitations of Excel * Fixed bug in pandas.read_csv where a BOM would result in incorrect parsing using engine=\'python\' * read_excel now raises a ValueError when input is of type pandas.io.excel.ExcelFile and engine param is passed since pandas.io.excel.ExcelFile has an engine defined * Bug while selecting from HDFStore with where=\'\' specified . * Fixed bug in DataFrame.to_excel() where custom objects (i.e. PeriodIndex) inside merged cells were not being converted into types safe for the Excel writer * Bug in read_hdf where reading a timezone aware DatetimeIndex would raise a TypeError * Bug in to_msgpack and read_msgpack which would raise a ValueError rather than a FileNotFoundError for an invalid path * Fixed bug in DataFrame.to_parquet which would raise a ValueError when the dataframe had no columns * Allow parsing of PeriodDtype columns when using read_csv > Plotting * Fixed bug where api.extensions.ExtensionArray could not be used in matplotlib plotting * Bug in an error message in DataFrame.plot. Improved the error message if non-numerics are passed to DataFrame.plot * Bug in incorrect ticklabel positions when plotting an index that are non-numeric / non-datetime * Fixed bug causing plots of PeriodIndex timeseries to fail if the frequency is a multiple of the frequency rule code * Fixed bug when plotting a DatetimeIndex with datetime.timezone.utc timezone > Groupby/resample/rolling * Bug in pandas.core.resample.Resampler.agg with a timezone aware index where OverflowError would raise when passing a list of functions * Bug in pandas.core.groupby.DataFrameGroupBy.nunique in which the names of column levels were lost * Bug in pandas.core.groupby.GroupBy.agg when applying an aggregation function to timezone aware data * Bug in pandas.core.groupby.GroupBy.first and pandas.core.groupby.GroupBy.last where timezone information would be dropped * Bug in pandas.core.groupby.GroupBy.size when grouping only NA values * Bug in Series.groupby where observed kwarg was previously ignored * Bug in Series.groupby where using groupby with a MultiIndex Series with a list of labels equal to the length of the series caused incorrect grouping * Ensured that ordering of outputs in groupby aggregation functions is consistent across all versions of Python * Ensured that result group order is correct when grouping on an ordered Categorical and specifying observed=True * Bug in pandas.core.window.Rolling.min and pandas.core.window.Rolling.max that caused a memory leak * Bug in pandas.core.window.Rolling.count and pandas.core.window.Expanding.count was previously ignoring the axis keyword * Bug in pandas.core.groupby.GroupBy.idxmax and pandas.core.groupby.GroupBy.idxmin with datetime column would return incorrect dtype * Bug in pandas.core.groupby.GroupBy.cumsum, pandas.core.groupby.GroupBy.cumprod, pandas.core.groupby.GroupBy.cummin and pandas.core.groupby.GroupBy.cummax with categorical column having absent categories, would return incorrect result or segfault * Bug in pandas.core.groupby.GroupBy.nth where NA values in the grouping would return incorrect results * Bug in pandas.core.groupby.SeriesGroupBy.transform where transforming an empty group would raise a ValueError * Bug in pandas.core.frame.DataFrame.groupby where passing a pandas.core.groupby.grouper.Grouper would return incorrect groups when using the .groups accessor * Bug in pandas.core.groupby.GroupBy.agg where incorrect results are returned for uint64 columns. * Bug in pandas.core.window.Rolling.median and pandas.core.window.Rolling.quantile where MemoryError is raised with empty window * Bug in pandas.core.window.Rolling.median and pandas.core.window.Rolling.quantile where incorrect results are returned with closed=\'left\' and closed=\'neither\' * Improved pandas.core.window.Rolling, pandas.core.window.Window and pandas.core.window.EWM functions to exclude nuisance columns from results instead of raising errors and raise a DataError only if all columns are nuisance * Bug in pandas.core.window.Rolling.max and pandas.core.window.Rolling.min where incorrect results are returned with an empty variable window * Raise a helpful exception when an unsupported weighted window function is used as an argument of pandas.core.window.Window.aggregate > Reshaping * Bug in pandas.merge adds a string of None, if None is assigned in suffixes instead of remain the column name as-is . * Bug in merge when merging by index name would sometimes result in an incorrectly numbered index (missing index values are now assigned NA) * to_records now accepts dtypes to its column_dtypes parameter * Bug in concat where order of OrderedDict (and dict in Python 3.6+) is not respected, when passed in as objs argument * Bug in pivot_table where columns with NaN values are dropped even if dropna argument is False, when the aggfunc argument contains a list * Bug in concat where the resulting freq of two DatetimeIndex with the same freq would be dropped . * Bug in merge where merging with equivalent Categorical dtypes was raising an error * bug in DataFrame instantiating with a dict of iterators or generators (e.g. pd.DataFrame({\'A\': reversed(range(3))})) raised an error . * Bug in DataFrame instantiating with a range (e.g. pd.DataFrame(range(3))) raised an error . * Bug in DataFrame constructor when passing non-empty tuples would cause a segmentation fault * Bug in Series.apply failed when the series is a timezone aware DatetimeIndex * Bug in pandas.cut where large bins could incorrectly raise an error due to an integer overflow * Bug in DataFrame.sort_index where an error is thrown when a multi-indexed DataFrame is sorted on all levels with the initial level sorted last * Bug in Series.nlargest treats True as smaller than False * Bug in DataFrame.pivot_table with a IntervalIndex as pivot index would raise TypeError * Bug in which DataFrame.from_dict ignored order of OrderedDict when orient=\'index\' . * Bug in DataFrame.transpose where transposing a DataFrame with a timezone-aware datetime column would incorrectly raise ValueError * Bug in pivot_table when pivoting a timezone aware column as the values would remove timezone information * Bug in merge_asof when specifying multiple by columns where one is datetime64[ns, tz] dtype > Sparse * Significant speedup in SparseArray initialization that benefits most operations, fixing performance regression introduced in v0.20.0 * Bug in SparseFrame constructor where passing None as the data would cause default_fill_value to be ignored * Bug in SparseDataFrame when adding a column in which the length of values does not match length of index, AssertionError is raised instead of raising ValueError * Introduce a better error message in Series.sparse.from_coo so it returns a TypeError for inputs that are not coo matrices * Bug in numpy.modf on a SparseArray. Now a tuple of SparseArray is returned . > Build Changes * Fix install error with PyPy on macOS > ExtensionArray * Bug in factorize when passing an ExtensionArray with a custom na_sentinel . * Series.count miscounts NA values in ExtensionArrays * Added Series.__array_ufunc__ to better handle NumPy ufuncs applied to Series backed by extension arrays . * Keyword argument deep has been removed from ExtensionArray.copy > Other * Removed unused C functions from vendored UltraJSON implementation * Allow Index and RangeIndex to be passed to numpy min and max functions * Use actual class name in repr of empty objects of a Series subclass . * Bug in DataFrame where passing an object array of timezone-aware datetime objects would incorrectly raise ValueError- Remove upstream-included pandas-tests-memory.patch * Sat Mar 16 2019 Arun Persaud - specfile: * requier pytest-mock- update to version 0.24.2: * Fixed Regressions + Fixed regression in DataFrame.all() and DataFrame.any() where bool_only=True was ignored (GH25101) + Fixed issue in DataFrame construction with passing a mixed list of mixed types could segfault. (GH25075) + Fixed regression in DataFrame.apply() causing RecursionError when dict-like classes were passed as argument. (GH25196) + Fixed regression in DataFrame.replace() where regex=True was only replacing patterns matching the start of the string (GH25259) + Fixed regression in DataFrame.duplicated(), where empty dataframe was not returning a boolean dtyped Series. (GH25184) + Fixed regression in Series.min() and Series.max() where numeric_only=True was ignored when the Series contained Categorical data (GH25299) + Fixed regression in subtraction between Series objects with datetime64[ns] dtype incorrectly raising OverflowError when the Series on the right contains null values (GH25317) + Fixed regression in TimedeltaIndex where np.sum(index) incorrectly returned a zero-dimensional object instead of a scalar (GH25282) + Fixed regression in IntervalDtype construction where passing an incorrect string with ‘Interval’ as a prefix could result in a RecursionError. (GH25338) + Fixed regression in creating a period-dtype array from a read-only NumPy array of period objects. (GH25403) + Fixed regression in Categorical, where constructing it from a categorical Series and an explicit categories= that differed from that in the Series created an invalid object which could trigger segfaults. (GH25318) + Fixed regression in to_timedelta() losing precision when converting floating data to Timedelta data (GH25077). + Fixed pip installing from source into an environment without NumPy (GH25193) + Fixed regression in DataFrame.replace() where large strings of numbers would be coerced into int64, causing an OverflowError (GH25616) + Fixed regression in factorize() when passing a custom na_sentinel value with sort=True (GH25409). + Fixed regression in DataFrame.to_csv() writing duplicate line endings with gzip compress (GH25311) * Bug Fixes + I/O o Better handling of terminal printing when the terminal dimensions are not known (GH25080) o Bug in reading a HDF5 table-format DataFrame created in Python 2, in Python 3 (GH24925) o Bug in reading a JSON with orient=\'table\' generated by DataFrame.to_json() with index=False (GH25170) o Bug where float indexes could have misaligned values when printing (GH25061) + Reshaping o Bug in transform() where applying a function to a timezone aware column would return a timezone naive result (GH24198) o Bug in DataFrame.join() when joining on a timezone aware DatetimeIndex (GH23931) o Visualization o Bug in Series.plot() where a secondary y axis could not be set to log scale (GH25545) + Other o Bug in Series.is_unique() where single occurrences of NaN were not considered unique (GH25180) o Bug in merge() when merging an empty DataFrame with an Int64 column or a non-empty DataFrame with an Int64 column that is all NaN (GH25183) o Bug in IntervalTree where a RecursionError occurs upon construction due to an overflow when adding endpoints, which also causes IntervalIndex to crash during indexing operations (GH25485) o Bug in Series.size raising for some extension-array-backed Series, rather than returning the size (GH25580) o Bug in resampling raising for nullable integer-dtype columns (GH25580) * Fri Feb 22 2019 Tomáš Chvátal - Add patch to fix testrun on 32bit: https://github.com/pandas-dev/pandas/issues/25384 * pandas-tests-memory.patch * Thu Feb 21 2019 Tomáš Chvátal - Add requirement for at least 4 GB of physical memory * Tue Feb 19 2019 Tomáš Chvátal - Do not delete tests, they are used even by other inheriting packages for their testing- Execute tests * Tue Feb 05 2019 Todd R - Update to 0.24.1 * The default ``sort`` value for :meth:`Index.union` has changed from ``True`` to ``None`` (:issue:`24959`). The default *behavior *, however, remains the same * Fixed regression in :meth:`DataFrame.to_dict` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns, or wrongly converting column names that were not valid python identifiers (:issue:`24939`, :issue:`24940`). * Fixed regression in :func:`read_sql` when passing certain queries with MySQL/pymysql (:issue:`24988`). * Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`). * Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`). * Fixed regression in :meth:`Series.rename_axis` and :meth:`DataFrame.rename_axis` where passing ``None`` failed to remove the axis name (:issue:`25034`) * Fixed regression in :func:`to_timedelta` with `box=False` incorrectly returning a ``datetime64`` object instead of a ``timedelta64`` object (:issue:`24961`) * Fixed regression where custom hashable types could not be used as column keys in :meth:`DataFrame.set_index` (:issue:`24969`) * Bug in :meth:`DataFrame.groupby` with :class:`Grouper` when there is a time change (DST) and grouping frequency is ``\'1d\'`` (:issue:`24972`) * Fixed the warning for implicitly registered matplotlib converters not showing. See :ref:`whatsnew_0211.converters` for more (:issue:`24963`). * Fixed AttributeError when printing a DataFrame\'s HTML repr after accessing the IPython config object (:issue:`25036`) * Mon Jan 28 2019 Todd R - Update to 0.24.0 Highlights include: * Optional Integer NA Support * New APIs for accessing the array backing a Series or Index * A new top-level method for creating arrays * Store Interval and Period data in a Series or DataFrame * Support for joining on two MultiIndexes * Wed Aug 08 2018 jengelhAATTinai.de- Ensure neutrality of description. Remove future visions. Use noun phrase in summary. * Sat Aug 04 2018 toddrme2178AATTgmail.com- Update to 0.23.4 * Python 3.7 with Windows gave all missing values for rolling variance calculations (:issue:`21813`) * Bug where calling :func:`DataFrameGroupBy.agg` with a list of functions including ``ohlc`` as the non-initial element would raise a ``ValueError`` (:issue:`21716`) * Bug in ``roll_quantile`` caused a memory leak when calling ``.rolling(...).quantile(q)`` with ``q`` in (0,1) (:issue:`21965`) * Bug in :func:`Series.clip` and :func:`DataFrame.clip` cannot accept list-like threshold containing ``NaN`` (:issue:`19992`) * Sat Jul 14 2018 arunAATTgmx.de- update to version 0.23.3: * This release fixes a build issue with the sdist for Python 3.7 (GH21785) There are no other changes. * Sat Jul 07 2018 arunAATTgmx.de- update to version 0.23.2: * Fixed Regressions + Fixed regression in to_csv() when handling file-like object incorrectly (GH21471) + Re-allowed duplicate level names of a MultiIndex. Accessing a level that has a duplicate name by name still raises an error (GH19029). + Bug in both DataFrame.first_valid_index() and Series.first_valid_index() raised for a row index having duplicate values (GH21441) + Fixed printing of DataFrames with hierarchical columns with long names (GH21180) + Fixed regression in reindex() and groupby() with a MultiIndex or multiple keys that contains categorical datetime-like values (GH21390). + Fixed regression in unary negative operations with object dtype (GH21380) + Bug in Timestamp.ceil() and Timestamp.floor() when timestamp is a multiple of the rounding frequency (GH21262) + Fixed regression in to_clipboard() that defaulted to copying dataframes with space delimited instead of tab delimited (GH21104) * Build Changes + The source and binary distributions no longer include test data files, resulting in smaller download sizes. Tests relying on these data files will be skipped when using pandas.test(). (GH19320) * Bug Fixes * Conversion + Bug in constructing Index with an iterator or generator (GH21470) + Bug in Series.nlargest() for signed and unsigned integer dtypes when the minimum value is present (GH21426) * Indexing + Bug in Index.get_indexer_non_unique() with categorical key (GH21448) + Bug in comparison operations for MultiIndex where error was raised on equality / inequality comparison involving a MultiIndex with nlevels == 1 (GH21149) + Bug in DataFrame.drop() behaviour is not consistent for unique and non-unique indexes (GH21494) + Bug in DataFrame.duplicated() with a large number of columns causing a ‘maximum recursion depth exceeded’ (GH21524). * I/O + Bug in read_csv() that caused it to incorrectly raise an error when nrows=0, low_memory=True, and index_col was not None (GH21141) + Bug in json_normalize() when formatting the record_prefix with integer columns (GH21536) * Categorical + Bug in rendering Series with Categorical dtype in rare conditions under Python 2.7 (GH21002) * Timezones + Bug in Timestamp and DatetimeIndex where passing a Timestamp localized after a DST transition would return a datetime before the DST transition (GH20854) + Bug in comparing DataFrame`s with tz-aware :class:`DatetimeIndex columns with a DST transition that raised a KeyError (GH19970) * Timedelta + Bug in Timedelta where non-zero timedeltas shorter than 1 microsecond were considered False (GH21484) * Wed Jun 13 2018 toddrme2178AATTgmail.com- Update to 0.23.1 + Fixed Regressions * Reverted change to comparing a Series holding datetimes and a datetime.date object * Reverted the ability of to_sql() to perform multivalue inserts as this caused regression in certain cases (GH21103). In the future this will be made configurable. * Fixed regression in the DatetimeIndex.date and DatetimeIndex.time attributes in case of timezone-aware data: DatetimeIndex.time returned a tz-aware time instead of tz-naive (GH21267) and DatetimeIndex.date returned incorrect date when the input date has a non-UTC timezone (GH21230). * Fixed regression in pandas.io.json.json_normalize() when called with None values in nested levels in JSON, and to not drop keys with value as None (GH21158, GH21356). * Bug in to_csv() causes encoding error when compression and encoding are specified (GH21241, GH21118) * Bug preventing pandas from being importable with -OO optimization (GH21071) * Bug in Categorical.fillna() incorrectly raising a TypeError when value the individual categories are iterable and value is an iterable (GH21097, GH19788) * Fixed regression in constructors coercing NA values like None to strings when passing dtype=str (GH21083) * Regression in pivot_table() where an ordered Categorical with missing values for the pivot’s index would give a mis-aligned result (GH21133) * Fixed regression in merging on boolean index/columns (GH21119). + Performance Improvements * Improved performance of CategoricalIndex.is_monotonic_increasing(), CategoricalIndex.is_monotonic_decreasing() and CategoricalIndex.is_monotonic() (GH21025) * Improved performance of CategoricalIndex.is_unique() (GH21107) + Bug fixes * Groupby/Resample/Rolling > Bug in DataFrame.agg() where applying multiple aggregation functions to a DataFrame with duplicated column names would cause a stack overflow (GH21063) > Bug in pandas.core.groupby.GroupBy.ffill() and pandas.core.groupby.GroupBy.bfill() where the fill within a grouping would not always be applied as intended due to the implementations’ use of a non-stable sort (GH21207) > Bug in pandas.core.groupby.GroupBy.rank() where results did not scale to 100% when specifying method=\'dense\' and pct=True > Bug in pandas.DataFrame.rolling() and pandas.Series.rolling() which incorrectly accepted a 0 window size rather than raising (GH21286) * Data-type specific > Bug in Series.str.replace() where the method throws TypeError on Python 3.5.2 (:issue: 21078) > Bug in Timedelta: where passing a float with a unit would prematurely round the float precision (:issue: 14156) > Bug in pandas.testing.assert_index_equal() which raised AssertionError incorrectly, when comparing two CategoricalIndex objects with param check_categorical=False (GH19776) * Sparse > Bug in SparseArray.shape which previously only returned the shape SparseArray.sp_values (GH21126) * Indexing > Bug in Series.reset_index() where appropriate error was not raised with an invalid level name (GH20925) > Bug in interval_range() when start/periods or end/periods are specified with float start or end (GH21161) > Bug in MultiIndex.set_names() where error raised for a MultiIndex with nlevels == 1 (GH21149) > Bug in IntervalIndex constructors where creating an IntervalIndex from categorical data was not fully supported (GH21243, issue:21253) > Bug in MultiIndex.sort_index() which was not guaranteed to sort correctly with level=1; this was also causing data misalignment in particular DataFrame.stack() operations (GH20994, GH20945, GH21052) * Plotting > New keywords (sharex, sharey) to turn on/off sharing of x/y-axis by subplots generated with pandas.DataFrame().groupby().boxplot() (:issue: 20968) * I/O > Bug in IO methods specifying compression=\'zip\' which produced uncompressed zip archives (GH17778, GH21144) > Bug in DataFrame.to_stata() which prevented exporting DataFrames to buffers and most file-like objects (GH21041) > Bug in read_stata() and StataReader which did not correctly decode utf-8 strings on Python 3 from Stata 14 files (dta version 118) (GH21244) > Bug in IO JSON read_json() reading empty JSON schema with orient=\'table\' back to DataFrame caused an error (GH21287) * Reshaping > Bug in concat() where error was raised in concatenating Series with numpy scalar and tuple names (GH21015) > Bug in concat() warning message providing the wrong guidance for future behavior (GH21101) * Other > Tab completion on Index in IPython no longer outputs deprecation warnings (GH21125) > Bug preventing pandas being used on Windows without C++ redistributable installed (GH21106) * Mon May 21 2018 toddrme2178AATTgmail.com- Update dependencies * Thu May 17 2018 tchvatalAATTsuse.com- Update to 0.23.0: * Round-trippable JSON format with ‘table’ orient. * Instantiation from dicts respects order for Python 3.6+. * Dependent column arguments for assign. * Merging / sorting on a combination of columns and index levels. * Extending Pandas with custom types. * Excluding unobserved categories from groupby. * Changes to make output shape of DataFrame.apply consistent. * Thu May 17 2018 tchvatalAATTsuse.com- Do not bother generating pandas doc if it is already in both html and pdf provided by upstream, just point to the URL * Thu Jan 11 2018 tchvatalAATTsuse.com- Drop commented code to allow us py3 only build * Wed Jan 03 2018 arunAATTgmx.de- specfile: * update copyright year- update to version 0.22.0: * Pandas 0.22.0 changes the handling of empty and all-NA sums and products. The summary is that + The sum of an empty or all-NA Series is now 0 + The product of an empty or all-NA Series is now 1 + We’ve added a min_count parameter to .sum() and .prod() controlling the minimum number of valid values for the result to be valid. If fewer than min_count non-NA values are present, the result is NA. The default is 0. To return NaN, the 0.21 behavior, use min_count=1. * Sat Dec 16 2017 arunAATTgmx.de- update to version 0.21.1: * Highlights include: + Temporarily restore matplotlib datetime plotting functionality. This should resolve issues for users who implicitly relied on pandas to plot datetimes with matplotlib. See here. + Improvements to the Parquet IO functions introduced in 0.21.0. See here. * Improvements to the Parquet IO functionality + DataFrame.to_parquet() will now write non-default indexes when the underlying engine supports it. The indexes will be preserved when reading back in with read_parquet() (GH18581). + read_parquet() now allows to specify the columns to read from a parquet file (GH18154) + read_parquet() now allows to specify kwargs which are passed to the respective engine (GH18216) * Other Enhancements + Timestamp.timestamp() is now available in Python 2.7. (GH17329) + Grouper and TimeGrouper now have a friendly repr output (GH18203). * Deprecations + pandas.tseries.register has been renamed to pandas.plotting.register_matplotlib_converters`() (GH18301) * Performance Improvements + Improved performance of plotting large series/dataframes (GH18236). * Conversion + Bug in TimedeltaIndex subtraction could incorrectly overflow when NaT is present (GH17791) + Bug in DatetimeIndex subtracting datetimelike from DatetimeIndex could fail to overflow (GH18020) + Bug in IntervalIndex.copy() when copying and IntervalIndex with non-default closed (GH18339) + Bug in DataFrame.to_dict() where columns of datetime that are tz-aware were not converted to required arrays when used with orient=\'records\', raising\"TypeError` (GH18372) + Bug in DateTimeIndex and date_range() where mismatching tz-aware start and end timezones would not raise an err if end.tzinfo is None (GH18431) + Bug in Series.fillna() which raised when passed a long integer on Python 2 (GH18159). * Indexing + Bug in a boolean comparison of a datetime.datetime and a datetime64[ns] dtype Series (GH17965) + Bug where a MultiIndex with more than a million records was not raising AttributeError when trying to access a missing attribute (GH18165) + Bug in IntervalIndex constructor when a list of intervals is passed with non-default closed (GH18334) + Bug in Index.putmask when an invalid mask passed (GH18368) + Bug in masked assignment of a timedelta64[ns] dtype Series, incorrectly coerced to float (GH18493) * I/O + Bug in class:~pandas.io.stata.StataReader not converting date/time columns with display formatting addressed (GH17990). Previously columns with display formatting were normally left as ordinal numbers and not converted to datetime objects. + Bug in read_csv() when reading a compressed UTF-16 encoded file (GH18071) + Bug in read_csv() for handling null values in index columns when specifying na_filter=False (GH5239) + Bug in read_csv() when reading numeric category fields with high cardinality (GH18186) + Bug in DataFrame.to_csv() when the table had MultiIndex columns, and a list of strings was passed in for header (GH5539) + Bug in parsing integer datetime-like columns with specified format in read_sql (GH17855). + Bug in DataFrame.to_msgpack() when serializing data of the numpy.bool_ datatype (GH18390) + Bug in read_json() not decoding when reading line deliminted JSON from S3 (GH17200) + Bug in pandas.io.json.json_normalize() to avoid modification of meta (GH18610) + Bug in to_latex() where repeated multi-index values were not printed even though a higher level index differed from the previous row (GH14484) + Bug when reading NaN-only categorical columns in HDFStore (GH18413) + Bug in DataFrame.to_latex() with longtable=True where a latex multicolumn always spanned over three columns (GH17959) * Plotting + Bug in DataFrame.plot() and Series.plot() with DatetimeIndex where a figure generated by them is not pickleable in Python 3 (GH18439) * Groupby/Resample/Rolling + Bug in DataFrame.resample(...).apply(...) when there is a callable that returns different columns (GH15169) + Bug in DataFrame.resample(...) when there is a time change (DST) and resampling frequecy is 12h or higher (GH15549) + Bug in pd.DataFrameGroupBy.count() when counting over a datetimelike column (GH13393) + Bug in rolling.var where calculation is inaccurate with a zero-valued array (GH18430) * Reshaping + Error message in pd.merge_asof() for key datatype mismatch now includes datatype of left and right key (GH18068) + Bug in pd.concat when empty and non-empty DataFrames or Series are concatenated (GH18178 GH18187) + Bug in DataFrame.filter(...) when unicode is passed as a condition in Python 2 (GH13101) + Bug when merging empty DataFrames when np.seterr(divide=\'raise\') is set (GH17776) * Numeric + Bug in pd.Series.rolling.skew() and rolling.kurt() with all equal values has floating issue (GH18044) + Bug in TimedeltaIndex subtraction could incorrectly overflow when NaT is present (GH17791) + Bug in DatetimeIndex subtracting datetimelike from DatetimeIndex could fail to overflow (GH18020) * Categorical + Bug in DataFrame.astype() where casting to ‘category’ on an empty DataFrame causes a segmentation fault (GH18004) + Error messages in the testing module have been improved when items have different CategoricalDtype (GH18069) + CategoricalIndex can now correctly take a pd.api.types.CategoricalDtype as its dtype (GH18116) + Bug in Categorical.unique() returning read-only codes array when all categories were NaN (GH18051) + Bug in DataFrame.groupby(axis=1) with a CategoricalIndex (GH18432) * String + Series.str.split() will now propogate NaN values across all expanded columns instead of None (GH18450) * Mon Oct 30 2017 arunAATTgmx.de- specfile: * updated minimum numpy version to 1.9.0 (see setup.py)- update to version 0.21.0: * Highlights include: + Integration with Apache Parquet, including a new top-level read_parquet() function and DataFrame.to_parquet() method, see here. + New user-facing pandas.api.types.CategoricalDtype for specifying categoricals independent of the data, see here. + The behavior of sum and prod on all-NaN Series/DataFrames is now consistent and no longer depends on whether bottleneck is installed, see here. + Compatibility fixes for pypy, see here. + Additions to the drop, reindex and rename API to make them more consistent, see here. + Addition of the new methods DataFrame.infer_objects (see here) and GroupBy.pipe (see here). + Indexing with a list of labels, where one or more of the labels is missing, is deprecated and will raise a KeyError in a future version, see here. * full list at http://pandas.pydata.org/pandas-docs/stable/whatsnew.html * Sat Sep 23 2017 arunAATTgmx.de- update to version 0.20.3: * bug fix release, see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-20-3-july-7-2017 for complete changelog- changes from version 0.20.2: * bug fix release, see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-20-2-june-4-2017 for complete changelog * Thu May 18 2017 toddrme2178AATTgmail.com- Update to version 0.20.1 Highlights include: * New ``.agg()`` API for Series/DataFrame similar to the groupby-rolling-resample API\'s * Integration with the ``feather-format``, including a new top-level ``pd.read_feather()`` and ``DataFrame.to_feather()`` method * The ``.ix`` indexer has been deprecated * ``Panel`` has been deprecated * Addition of an ``IntervalIndex`` and ``Interval`` scalar type * Improved user API when grouping by index levels in ``.groupby()`` * Improved support for ``UInt64`` dtypes * A new orient for JSON serialization, ``orient=\'table\'``, that uses the Table Schema spec and that gives the possibility for a more interactive repr in the Jupyter Notebook * Experimental support for exporting styled DataFrames (``DataFrame.style``) to Excel * Window binary corr/cov operations now return a MultiIndexed ``DataFrame`` rather than a ``Panel``, as ``Panel`` is now deprecated * Support for S3 handling now uses ``s3fs`` * Google BigQuery support now uses the ``pandas-gbq`` library * Mon May 08 2017 toddrme2178AATTgmail.com- Fix dateutil dependency * Tue Apr 25 2017 toddrme2178AATTgmail.com- Implement single-spec version. * Thu Mar 30 2017 toddrme2178AATTgmail.com- update to version 0.19.2: * Enhancements The pd.merge_asof(), added in 0.19.0, gained some improvements: + pd.merge_asof() gained left_index/right_index and left_by/right_by arguments (GH14253) + pd.merge_asof() can take multiple columns in by parameter and has specialized dtypes for better performace (GH13936) * Performance Improvements + Performance regression with PeriodIndex (GH14822) + Performance regression in indexing with getitem (GH14930) + Improved performance of .replace() (GH12745) + Improved performance Series creation with a datetime index and dictionary data (GH14894) * Bug Fixes + Compat with python 3.6 for pickling of some offsets (GH14685) + Compat with python 3.6 for some indexing exception types (GH14684, GH14689) + Compat with python 3.6 for deprecation warnings in the test suite (GH14681) + Compat with python 3.6 for Timestamp pickles (GH14689) + Compat with dateutil==2.6.0; segfault reported in the testing suite (GH14621) + Allow nanoseconds in Timestamp.replace as a kwarg (GH14621) + Bug in pd.read_csv in which aliasing was being done for na_values when passed in as a dictionary (GH14203) + Bug in pd.read_csv in which column indices for a dict-like na_values were not being respected (GH14203) + Bug in pd.read_csv where reading files fails, if the number of headers is equal to the number of lines in the file (GH14515) + Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when multi-char delimiters were not being respected with quotes (GH14582) + Fix bugs (GH14734, GH13654) in pd.read_sas and pandas.io.sas.sas7bdat.SAS7BDATReader that caused problems when reading a SAS file incrementally. + Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when skipfooter was not being respected by Python’s CSV library (GH13879) + Bug in .fillna() in which timezone aware datetime64 values were incorrectly rounded (GH14872) + Bug in .groupby(..., sort=True) of a non-lexsorted MultiIndex when grouping with multiple levels (GH14776) + Bug in pd.cut with negative values and a single bin (GH14652) + Bug in pd.to_numeric where a 0 was not unsigned on a downcast=\'unsigned\' argument (GH14401) + Bug in plotting regular and irregular timeseries using shared axes (sharex=True or ax.twinx()) (GH13341, GH14322). + Bug in not propogating exceptions in parsing invalid datetimes, noted in python 3.6 (GH14561) + Bug in resampling a DatetimeIndex in local TZ, covering a DST change, which would raise AmbiguousTimeError (GH14682) + Bug in indexing that transformed RecursionError into KeyError or IndexingError (GH14554) + Bug in HDFStore when writing a MultiIndex when using data_columns=True (GH14435) + Bug in HDFStore.append() when writing a Series and passing a min_itemsize argument containing a value for the index (GH11412) + Bug when writing to a HDFStore in table format with a min_itemsize value for the index and without asking to append (GH10381) + Bug in Series.groupby.nunique() raising an IndexError for an empty Series (GH12553) + Bug in DataFrame.nlargest and DataFrame.nsmallest when the index had duplicate values (GH13412) + Bug in clipboard functions on linux with python2 with unicode and separators (GH13747) + Bug in clipboard functions on Windows 10 and python 3 (GH14362, GH12807) + Bug in .to_clipboard() and Excel compat (GH12529) + Bug in DataFrame.combine_first() for integer columns (GH14687). + Bug in pd.read_csv() in which the dtype parameter was not being respected for empty data (GH14712) + Bug in pd.read_csv() in which the nrows parameter was not being respected for large input when using the C engine for parsing (GH7626) + Bug in pd.merge_asof() could not handle timezone-aware DatetimeIndex when a tolerance was specified (GH14844) + Explicit check in to_stata and StataWriter for out-of-range values when writing doubles (GH14618) + Bug in .plot(kind=\'kde\') which did not drop missing values to generate the KDE Plot, instead generating an empty plot. (GH14821) + Bug in unstack() if called with a list of column(s) as an argument, regardless of the dtypes of all columns, they get coerced to object (GH11847)- update to version 0.19.1: * Performance Improvements + Fixed performance regression in factorization of Period data (GH14338) + Fixed performance regression in Series.asof(where) when where is a scalar (GH14461) + Improved performance in DataFrame.asof(where) when where is a scalar (GH14461) + Improved performance in .to_json() when lines=True (GH14408) + Improved performance in certain types of loc indexing with a MultiIndex (GH14551). * Bug Fixes + Source installs from PyPI will now again work without cython installed, as in previous versions (GH14204) + Compat with Cython 0.25 for building (GH14496) + Fixed regression where user-provided file handles were closed in read_csv (c engine) (GH14418). + Fixed regression in DataFrame.quantile when missing values where present in some columns (GH14357). + Fixed regression in Index.difference where the freq of a DatetimeIndex was incorrectly set (GH14323) + Added back pandas.core.common.array_equivalent with a deprecation warning (GH14555). + Bug in pd.read_csv for the C engine in which quotation marks were improperly parsed in skipped rows (GH14459) + Bug in pd.read_csv for Python 2.x in which Unicode quote characters were no longer being respected (GH14477) + Fixed regression in Index.append when categorical indices were appended (GH14545). + Fixed regression in pd.DataFrame where constructor fails when given dict with None value (GH14381) + Fixed regression in DatetimeIndex._maybe_cast_slice_bound when index is empty (GH14354). + Bug in localizing an ambiguous timezone when a boolean is passed (GH14402) + Bug in TimedeltaIndex addition with a Datetime-like object where addition overflow in the negative direction was not being caught (GH14068, GH14453) + Bug in string indexing against data with object Index may raise AttributeError (GH14424) + Corrrecly raise ValueError on empty input to pd.eval() and df.query() (GH13139) + Bug in RangeIndex.intersection when result is a empty set (GH14364). + Bug in groupby-transform broadcasting that could cause incorrect dtype coercion (GH14457) + Bug in Series.__setitem__ which allowed mutating read-only arrays (GH14359). + Bug in DataFrame.insert where multiple calls with duplicate columns can fail (GH14291) + pd.merge() will raise ValueError with non-boolean parameters in passed boolean type arguments (GH14434) + Bug in Timestamp where dates very near the minimum (1677-09) could underflow on creation (GH14415) + Bug in pd.concat where names of the keys were not propagated to the resulting MultiIndex (GH14252) + Bug in pd.concat where axis cannot take string parameters \'rows\' or \'columns\' (GH14369) + Bug in pd.concat with dataframes heterogeneous in length and tuple keys (GH14438) + Bug in MultiIndex.set_levels where illegal level values were still set after raising an error (GH13754) + Bug in DataFrame.to_json where lines=True and a value contained a } character (GH14391) + Bug in df.groupby causing an AttributeError when grouping a single index frame by a column and the index level (:issue`14327`) + Bug in df.groupby where TypeError raised when pd.Grouper(key=...) is passed in a list (GH14334) + Bug in pd.pivot_table may raise TypeError or ValueError when index or columns is not scalar and values is not specified (GH14380) * Sun Oct 23 2016 toddrme2178AATTgmail.com- update to version 0.19.0: (long changelog, see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-19-0-october-2-2016) * Highlights include: + merge_asof() for asof-style time-series joining + .rolling() is now time-series aware + read_csv() now supports parsing Categorical data + A function union_categorical() has been added for combining categoricals + PeriodIndex now has its own period dtype, and changed to be more consistent with other Index classes + Sparse data structures gained enhanced support of int and bool dtypes + Comparison operations with Series no longer ignores the index, see here for an overview of the API changes. + Introduction of a pandas development API for utility functions + Deprecation of Panel4D and PanelND. We recommend to represent these types of n-dimensional data with the xarray package. + Removal of the previously deprecated modules pandas.io.data, pandas.io.wb, pandas.tools.rplot.- specfile: * require python3-Cython * Split documentation into own subpackage to speed up build. * Remove buildrequires for optional dependencies to speed up build.- Remove unneeded patches: * 0001_disable_experimental_msgpack_big_endian.patch ^ * 0001_respect_byteorder_in_statareader.patch * Tue Jul 12 2016 antoine.belvireAATTlaposte.net- Update to 0.8.1: * .groupby(...) has been enhanced to provide convenient syntax when working with .rolling(..), .expanding(..) and .resample(..) per group. * pd.to_datetime() has gained the ability to assemble dates from a DataFrame. * Method chaining improvements. * Custom business hour offset. * Many bug fixes in the handling of sparse. * Expanded the Tutorials section with a feature on modern pandas, courtesy of AATTTomAugsb (GH13045).- Changes from 0.8.0: * Moving and expanding window functions are now methods on Series and DataFrame, similar to .groupby. * Adding support for a RangeIndex as a specialized form of the Int64Index for memory savings. * API breaking change to the .resample method to make it more .groupby like. * Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a TypeError. * The .to_xarray() function has been added for compatibility with the xarray package. * The read_sas function has been enhanced to read sas7bdat files. * Addition of the .str.extractall() method, and API changes to the .str.extract() method and .str.cat() method. * pd.test() top-level nose test runner is available (GH4327). * Fri Feb 26 2016 tbechtoldAATTsuse.com- Require python-python-dateutil. package was renamed * Tue Feb 09 2016 aplanasAATTsuse.com- Add 0001_respect_byteorder_in_statareader.patch Fix StataReader in big endian architectures https://github.com/pydata/pandas/issues/11282- Add 0001_disable_experimental_msgpack_big_endian.patch Skip experimental msgpack test in big endian systems * Wed Feb 03 2016 aplanasAATTsuse.com- Remove non-needed BuildRequires- Update Requires from documentation- Update Recommends from documentation- Add tests in %check section * Mon Nov 30 2015 toddrme2178AATTgmail.com- update to version 0.17.1: (for full changelog see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-17-1-november-21-2015) Highlights include: * Support for Conditional HTML Formatting, see here * Releasing the GIL on the csv reader & other ops, see here * Fixed regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values (GH11376) * Mon Oct 12 2015 toddrme2178AATTgmail.com- update to version 0.17.0: (for full changelog see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-17-0-october-9-2015) Highlights: * Release the Global Interpreter Lock (GIL) on some cython operations, see here * Plotting methods are now available as attributes of the .plot accessor, see here * The sorting API has been revamped to remove some long-time inconsistencies, see here * Support for a datetime64[ns] with timezones as a first-class dtype, see here * The default for to_datetime will now be to raise when presented with unparseable formats, previously this would return the original input. Also, date parse functions now return consistent results. See here * The default for dropna in HDFStore has changed to False, to store by default all rows even if they are all NaN, see here * Datetime accessor (dt) now supports Series.dt.strftime to generate formatted strings for datetime-likes, and Series.dt.total_seconds to ge nerate each duration of the timedelta in seconds. See here * Period and PeriodIndex can handle multiplied freq like 3D, which corresponding to 3 days span. See here * Development installed versions of pandas will now have PEP440 compliant version strings (GH9518) * Development support for benchmarking with the Air Speed Velocity library (GH8361) * Support for reading SAS xport files, see here * Documentation comparing SAS to pandas, see here * Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see here * Display format with plain text can optionally align with Unicode East Asian Width, see here * Compatibility with Python 3.5 (GH11097) * Compatibility with matplotlib 1.5.0 (GH11111) * Mon Jun 29 2015 toddrme2178AATTgmail.com- update to version 0.16.2: (see http://pandas.pydata.org/pandas-docs/stable/whatsnew.html#v0-16-2-june-12-2015) * Highlights + A new pipe method + Documentation on how to use numba with pandas * Enhancements + Added rsplit to Index/Series StringMethods (GH10303) + Removed the hard-coded size limits on the DataFrame HTML representation in the IPython notebook, and leave this to IPython itself (only for IPython v3.0 or greater). This eliminates the duplicate scroll bars that appeared in the notebook with large frames (GH10231). Note that the notebook has a toggle output scrolling feature to limit the display of very large frames (by clicking left of the output). You can also configure the way DataFrames are displayed using the pandas options, see here here. + axis parameter of DataFrame.quantile now accepts also index and column. (GH9543) * API Changes + Holiday now raises NotImplementedError if both offset and observance are used in the constructor instead of returning an incorrect result (GH10217). * Performance Improvements + Improved Series.resample performance with dtype=datetime64[ns] (GH7754) + Increase performance of str.split when expand=True (GH10081) * Bug Fixes + Bug in Series.hist raises an error when a one row Series was given (GH10214) + Bug where HDFStore.select modifies the passed columns list (GH7212) + Bug in Categorical repr with display.width of None in Python 3 (GH10087) + Bug in to_json with certain orients and a CategoricalIndex would segfault (GH10317) + Bug where some of the nan funcs do not have consistent return dtypes (GH10251) + Bug in DataFrame.quantile on checking that a valid axis was passed (GH9543) + Bug in groupby.apply aggregation for Categorical not preserving categories (GH10138) + Bug in to_csv where date_format is ignored if the datetime is fractional (GH10209) + Bug in DataFrame.to_json with mixed data types (GH10289) + Bug in cache updating when consolidating (GH10264) + Bug in mean() where integer dtypes can overflow (GH10172) + Bug where Panel.from_dict does not set dtype when specified (GH10058) + Bug in Index.union raises AttributeError when passing array-likes. (GH10149) + Bug in Timestamp‘s’ microsecond, quarter, dayofyear, week and daysinmonth properties return np.int type, not built-in int. (GH10050) + Bug in NaT raises AttributeError when accessing to daysinmonth, dayofweek properties. (GH10096) + Bug in Index repr when using the max_seq_items=None setting (GH10182). + Bug in getting timezone data with dateutil on various platforms ( GH9059, GH8639, GH9663, GH10121) + Bug in displaying datetimes with mixed frequencies; display ‘ms’ datetimes to the proper precision. (GH10170) + Bug in setitem where type promotion is applied to the entire block (GH10280) + Bug in Series arithmetic methods may incorrectly hold names (GH10068) + Bug in GroupBy.get_group when grouping on multiple keys, one of which is categorical. (GH10132) + Bug in DatetimeIndex and TimedeltaIndex names are lost after timedelta arithmetics ( GH9926) + Bug in DataFrame construction from nested dict with datetime64 (GH10160) + Bug in Series construction from dict with datetime64 keys (GH9456) + Bug in Series.plot(label=\"LABEL\") not correctly setting the label (GH10119) + Bug in plot not defaulting to matplotlib axes.grid setting (GH9792) + Bug causing strings containing an exponent, but no decimal to be parsed as int instead of float in engine=\'python\' for the read_csv parser (GH9565) + Bug in Series.align resets name when fill_value is specified (GH10067) + Bug in read_csv causing index name not to be set on an empty DataFrame (GH10184) + Bug in SparseSeries.abs resets name (GH10241) + Bug in TimedeltaIndex slicing may reset freq (GH10292) + Bug in GroupBy.get_group raises ValueError when group key contains NaT (GH6992) + Bug in SparseSeries constructor ignores input data name (GH10258) + Bug in Categorical.remove_categories causing a ValueError when removing the NaN category if underlying dtype is floating-point (GH10156) + Bug where infer_freq infers timerule (WOM-5XXX) unsupported by to_offset (GH9425) + Bug in DataFrame.to_hdf() where table format would raise a seemingly unrelated error for invalid (non-string) column names. This is now explicitly forbidden. (GH9057) + Bug to handle masking empty DataFrame (GH10126). + Bug where MySQL interface could not handle numeric table/column names (GH10255) + Bug in read_csv with a date_parser that returned a datetime64 array of other time resolution than [ns] (GH10245) + Bug in Panel.apply when the result has ndim=0 (GH10332) + Bug in read_hdf where auto_close could not be passed (GH9327). + Bug in read_hdf where open stores could not be used (GH10330). + Bug in adding empty DataFrame``s, now results in a ``DataFrame that .equals an empty DataFrame (GH10181). + Bug in to_hdf and HDFStore which did not check that complib choices were valid (GH4582, GH8874). * Tue May 19 2015 toddrme2178AATTgmail.com- Update to version 0.16.1 * Highlights - Support for a ``CategoricalIndex``, a category based index - New section on how-to-contribute to pandas - Revised \"Merge, join, and concatenate\" documentation, including graphical examples to make it easier to understand each operations - New method sample for drawing random samples from Series, DataFrames and Panels. - The default Index printing has changed to a more uniform format - BusinessHour datetime-offset is now supported * Enhancements - BusinessHour`offset is now supported, which represents business hours starting from 09:00 - 17:00 on BusinessDay by default. - DataFrame.diff now takes an axis parameter that determines the direction of differencing - Allow clip, clip_lower, and clip_upper to accept array-like arguments as thresholds (This is a regression from 0.11.0). These methods now have an axis parameter which determines how the Series or DataFrame will be aligned with the threshold(s). - DataFrame.mask() and Series.mask() now support same keywords as where - drop function can now accept errors keyword to suppress ValueError raised when any of label does not exist in the target data. - Allow conversion of values with dtype datetime64 or timedelta64 to strings using astype(str) - get_dummies function now accepts sparse keyword. If set to True, the return DataFrame is sparse, e.g. SparseDataFrame. - Period now accepts datetime64 as value input. - Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00. - Allow Panel.shift with axis=\'items\' - Trying to write an excel file now raises NotImplementedError if the DataFrame has a MultiIndex instead of writing a broken Excel file. - Allow Categorical.add_categories to accept Series or np.array. - Add/delete str/dt/cat accessors dynamically from __dir__. - Add normalize as a dt accessor method. - DataFrame and Series now have _constructor_expanddim property as overridable constructor for one higher dimensionality data. This should be used only when it is really needed - pd.lib.infer_dtype now returns \'bytes\' in Python 3 where appropriate. - We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series with a category dtype would convert this to regular object-based Index. - Series, DataFrames, and Panels now have a new method: pandas.DataFrame.sample. The method accepts a specific number of rows or columns to return, or a fraction of the total number or rows or columns. It also has options for sampling with or without replacement, for passing in a column for weights for non-uniform sampling, and for setting seed values to facilitate replication. - The following new methods are accesible via .str accessor to apply the function to each values. + capitalize() + swapcase() + normalize() + partition() + rpartition() + index() + rindex() + translate() - Added StringMethods (.str accessor) to Index - split now takes expand keyword to specify whether to expand dimensionality. return_type is deprecated. * API changes - When passing in an ax to df.plot( ..., ax=ax), the sharex kwarg will now default to False. - Add support for separating years and quarters using dashes, for example 2014-Q1. - pandas.DataFrame.assign now inserts new columns in alphabetical order. Previously the order was arbitrary. - By default, read_csv and read_table will now try to infer the compression type based on the file extension. Set compression=None to restore the previous behavior (no decompression). - The string representation of Index and its sub-classes have now been unified. These will show a single-line display if there are few values; a wrapped multi-line display for a lot of values (but less than display.max_seq_items; if lots of items > display.max_seq_items) will show a truncated display (the head and tail of the data). The formatting for MultiIndex is unchanges (a multi-line wrapped display). The display width responds to the option display.max_seq_items, which is defaulted to 100. * Deprecations - Series.str.split\'s return_type keyword was removed in favor of expand * Performance Improvements - Improved csv write performance with mixed dtypes, including datetimes by up to 5x - Improved csv write performance generally by 2x - Improved the performance of pd.lib.max_len_string_array by 5-7x * Bug Fixes - Bug where labels did not appear properly in the legend of DataFrame.plot(), passing label= arguments works, and Series indices are no longer mutated. - Bug in json serialization causing a segfault when a frame had zero length. - Bug in read_csv where missing trailing delimiters would cause segfault. - Bug in retaining index name on appending - Bug in scatter_matrix draws unexpected axis ticklabels - Fixed bug in StataWriter resulting in changes to input DataFrame upon save. - Bug in transform causing length mismatch when null entries were present and a fast aggregator was being used - Bug in equals causing false negatives when block order differed - Bug in grouping with multiple pd.Grouper where one is non-time based - Bug in read_sql_table error when reading postgres table with timezone - Bug in DataFrame slicing may not retain metadata - Bug where TimdeltaIndex were not properly serialized in fixed HDFStore - Bug with TimedeltaIndex constructor ignoring name when given another TimedeltaIndex as data. - Bug in DataFrameFormatter._get_formatted_index with not applying max_colwidth to the DataFrame index - Bug in .loc with a read-only ndarray data source - Bug in groupby.apply() that would raise if a passed user defined function either returned only None (for all input). - Always use temporary files in pytables tests - Bug in plotting continuously using secondary_y may not show legend properly. - Bug in DataFrame.plot(kind=\"hist\") results in TypeError when DataFrame contains non-numeric columns - Bug where repeated plotting of DataFrame with a DatetimeIndex may raise TypeError - Bug in setup.py that would allow an incompat cython version to build - Bug in plotting secondary_y incorrectly attaches right_ax property to secondary axes specifying itself recursively. - Bug in Series.quantile on empty Series of type Datetime or Timedelta - Bug in where causing incorrect results when upcasting was required - Bug in FloatArrayFormatter where decision boundary for displaying \"small\" floats in decimal format is off by one order of magnitude for a given display.precision - Fixed bug where DataFrame.plot() raised an error when both color and style keywords were passed and there was no color symbol in the style strings - Not showing a DeprecationWarning on combining list-likes with an Index - Bug in read_csv and read_table when using skip_rows parameter if blank lines are present. - Bug in read_csv() interprets index_col=True as 1 - Bug in index equality comparisons using == failing on Index/MultiIndex type incompatibility - Bug in which SparseDataFrame could not take nan as a column name - Bug in to_msgpack and read_msgpack zlib and blosc compression support - Bug GroupBy.size doesn\'t attach index name properly if grouped by TimeGrouper - Bug causing an exception in slice assignments because length_of_indexer returns wrong results - Bug in csv parser causing lines with initial whitespace plus one non-space character to be skipped. - Bug in C csv parser causing spurious NaNs when data started with newline followed by whitespace. - Bug causing elements with a null group to spill into the final group when grouping by a Categorical - Bug where .iloc and .loc behavior is not consistent on empty dataframes - Bug in invalid attribute access on a TimedeltaIndex incorrectly raised ValueError instead of AttributeError - Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g. Series(Categorical(list(\"abc\"), ordered=True)) > \"d\". This returned False for all elements, but now raises a TypeError. Equality comparisons also now return False for == and True for !=. - Bug in DataFrame __setitem__ when right hand side is a dictionary - Bug in where when dtype is datetime64/timedelta64, but dtype of other is not - Bug in MultiIndex.sortlevel() results in unicode level name breaks - Bug in which groupby.transform incorrectly enforced output dtypes to match input dtypes. - Bug in DataFrame constructor when columns parameter is set, and data is an empty list - Bug in bar plot with log=True raises TypeError if all values are less than 1 - Bug in horizontal bar plot ignores log=True - Bug in PyTables queries that did not return proper results using the index - Bug where dividing a dataframe containing values of type Decimal by another Decimal would raise. - Bug where using DataFrames asfreq would remove the name of the index. - Bug causing extra index point when resample BM/BQ - Changed caching in AbstractHolidayCalendar to be at the instance level rather than at the class level as the latter can result in unexpected behaviour. - Fixed latex output for multi-indexed dataframes - Bug causing an exception when setting an empty range using DataFrame.loc - Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes - Bug in transform and filter when grouping on a categorical variable - Bug in transform when groups are equal in number and dtype to the input index - Google BigQuery connector now imports dependencies on a per-method basis. - Updated BigQuery connector to no longer use deprecated oauth2client.tools.run() - Bug in subclassed DataFrame. It may not return the correct class, when slicing or subsetting it. - Bug in .median() where non-float null values are not handled correctly - Bug in Series.fillna() where it raises if a numerically convertible string is given * Tue Mar 24 2015 toddrme2178AATTgmail.com- update to version 0.16.0: * Highlights: - DataFrame.assign method - Series.to_coo/from_coo methods to interact with scipy.sparse - Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.timedelta - Changes to the .loc slicing API to conform with the behavior of .ix - Changes to the default for ordering in the Categorical constructor - Enhancement to the .str accessor to make string operations easier - The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality * New features - Inspired by dplyr\'s mutate verb, DataFrame has a new assign method. - Added SparseSeries.to_coo and SparseSeries.from_coo methods for converting to and from scipy.sparse.coo_matrix instances. - Following new methods are accesible via .str accessor to apply the function to each values. This is intended to make it more consistent with standard methods on strings: isalnum(), isalpha(), isdigit(), isdigit(), isspace(), islower(), isupper(), istitle(), isnumeric(), isdecimal(), find(), rfind(), ljust(), rjust(), zfill() - Reindex now supports method=\'nearest\' for frames or series with a monotonic increasing or decreasing index. - The read_excel() function\'s sheetname argument now accepts a list and None, to get multiple or all sheets respectively. If more than one sheet is specified, a dictionary is returned. - Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. - Paths beginning with ~ will now be expanded to begin with the user\'s home directory. - Added time interval selection in get_data_yahoo. - Added Timestamp.to_datetime64() to complement Timedelta.to_timedelta64(). - tseries.frequencies.to_offset() now accepts Timedelta as input. - Lag parameter was added to the autocorrelation method of Series, defaults to lag-1 autocorrelation. - Timedelta will now accept nanoseconds keyword in constructor. - SQL code now safely escapes table and column names. - Added auto-complete for Series.str., Series.dt. and Series.cat.. - Index.get_indexer now supports method=\'pad\' and method=\'backfill\' even for any target array, not just monotonic targets. - Index.asof now works on all index types. - A verbose argument has been augmented in io.read_excel(), defaults to False. Set to True to print sheet names as they are parsed. - Added days_in_month (compatibility alias daysinmonth) property to Timestamp, DatetimeIndex, Period, PeriodIndex, and Series.dt. - Added decimal option in to_csv to provide formatting for non-\'.\' decimal separators - Added normalize option for Timestamp to normalized to midnight - Added example for DataFrame import to R using HDF5 file and rhdf5 library. * Backwards incompatible API changes - In v0.16.0, we are restoring the API to match that of datetime.timedelta. Further, the component values are still available through the .components accessor. This affects the .seconds and .microseconds accessors, and removes the .hours, .minutes, .milliseconds accessors. These changes affect TimedeltaIndex and the Series .dt accessor as well. - The behavior of a small sub-set of edge cases for using .loc have changed. Furthermore we have improved the content of the error messages that are raised: + Slicing with .loc where the start and/or stop bound is not found in the index is now allowed; this previously would raise a KeyError. This makes the behavior the same as .ix in this case. This change is only for slicing, not when indexing with a single label. + Allow slicing with float-like values on an integer index for .ix. Previously this was only enabled for .loc: + Provide a useful exception for indexing with an invalid type for that index when using .loc. For example trying to use .loc on an index of type DatetimeIndex or PeriodIndex or TimedeltaIndex, with an integer (or a float). - In prior versions, Categoricals that had an unspecified ordering (meaning no ordered keyword was passed) were defaulted as ordered Categoricals. Going forward, the ordered keyword in the Categorical constructor will default to False. Ordering must now be explicit. Furthermore, previously you *could * change the ordered attribute of a Categorical by just setting the attribute, e.g. cat.ordered=True; This is now deprecated and you should use cat.as_ordered() or cat.as_unordered(). These will by default return a * *new * * object and not modify the existing object. - Index.duplicated now returns np.array(dtype=bool) rather than Index(dtype=object) containing bool values. - DataFrame.to_json now returns accurate type serialisation for each column for frames of mixed dtype - DatetimeIndex, PeriodIndex and TimedeltaIndex.summary now output the same format. - TimedeltaIndex.freqstr now output the same string format as DatetimeIndex. - Bar and horizontal bar plots no longer add a dashed line along the info axis. The prior style can be achieved with matplotlib\'s axhline or axvline methods. - Series accessors .dt, .cat and .str now raise AttributeError instead of TypeError if the series does not contain the appropriate type of data. This follows Python\'s built-in exception hierarchy more closely and ensures that tests like hasattr(s, \'cat\') are consistent on both Python 2 and 3. - Series now supports bitwise operation for integral types. Previously even if the input dtypes were integral, the output dtype was coerced to bool. - During division involving a Series or DataFrame, 0/0 and 0//0 now give np.nan instead of np.inf. - Series.values_counts and Series.describe for categorical data will now put NaN entries at the end. - Series.describe for categorical data will now give counts and frequencies of 0, not NaN, for unused categories - Due to a bug fix, looking up a partial string label with DatetimeIndex.asof now includes values that match the string, even if they are after the start of the partial string label. Old behavior: * Deprecations - The rplot trellis plotting interface is deprecated and will be removed in a future version. We refer to external packages like seaborn for similar but more refined functionality. - The pandas.sandbox.qtpandas interface is deprecated and will be removed in a future version. We refer users to the external package pandas-qt. - The pandas.rpy interface is deprecated and will be removed in a future version. Similar functionaility can be accessed thru the rpy2 project - Adding DatetimeIndex/PeriodIndex to another DatetimeIndex/PeriodIndex is being deprecated as a set-operation. This will be changed to a TypeError in a future version. .union() should be used for the union set operation. - Subtracting DatetimeIndex/PeriodIndex from another DatetimeIndex/PeriodIndex is being deprecated as a set-operation. This will be changed to an actual numeric subtraction yielding a TimeDeltaIndex in a future version. .difference() should be used for the differencing set operation. * Removal of prior version deprecations/changes - DataFrame.pivot_table and crosstab\'s rows and cols keyword arguments were removed in favor of index and columns - DataFrame.to_excel and DataFrame.to_csv cols keyword argument was removed in favor of columns - Removed convert_dummies in favor of get_dummies - Removed value_range in favor of describe * Performance Improvements - Fixed a performance regression for .loc indexing with an array or list-like. - DataFrame.to_json 30x performance improvement for mixed dtype frames. - Performance improvements in MultiIndex.duplicated by working with labels instead of values - Improved the speed of nunique by calling unique instead of value_counts - Performance improvement of up to 10x in DataFrame.count and DataFrame.dropna by taking advantage of homogeneous/heterogeneous dtypes appropriately - Performance improvement of up to 20x in DataFrame.count when using a MultiIndex and the level keyword argument - Performance and memory usage improvements in merge when key space exceeds int64 bounds - Performance improvements in multi-key groupby - Performance improvements in MultiIndex.sortlevel - Performance and memory usage improvements in DataFrame.duplicated - Cythonized Period - Decreased memory usage on to_hdf * Bug Fixes - Changed .to_html to remove leading/trailing spaces in table body - Fixed issue using read_csv on s3 with Python 3 - Fixed compatibility issue in DatetimeIndex affecting architectures where numpy.int_ defaults to numpy.int32 - Bug in Panel indexing with an object-like - Bug in the returned Series.dt.components index was reset to the default index - Bug in Categorical.__getitem__/__setitem__ with listlike input getting incorrect results from indexer coercion - Bug in partial setting with a DatetimeIndex - Bug in groupby for integer and datetime64 columns when applying an aggregator that caused the value to be changed when the number was sufficiently large - Fixed bug in to_sql when mapping a Timestamp object column (datetime column with timezone info) to the appropriate sqlalchemy type. - Fixed bug in to_sql dtype argument not accepting an instantiated SQLAlchemy type. - Bug in .loc partial setting with a np.datetime64 - Incorrect dtypes inferred on datetimelike looking Series & on .xs slices - Items in Categorical.unique() (and s.unique() if s is of dtype category) now appear in the order in which they are originally found, not in sorted order. This is now consistent with the behavior for other dtypes in pandas. - Fixed bug on big endian platforms which produced incorrect results in StataReader. - Bug in MultiIndex.has_duplicates when having many levels causes an indexer overflow - Bug in pivot and unstack where nan values would break index alignment - Bug in left join on multi-index with sort=True or null values. - Bug in MultiIndex where inserting new keys would fail. - Bug in groupby when key space exceeds int64 bounds. - Bug in unstack with TimedeltaIndex or DatetimeIndex and nulls. - Bug in rank where comparing floats with tolerance will cause inconsistent behaviour. - Fixed character encoding bug in read_stata and StataReader when loading data from a URL. - Bug in adding offsets.Nano to other offets raises TypeError - Bug in DatetimeIndex iteration, related to, fixed in - Bugs in resample around DST transitions. This required fixing offset classes so they behave correctly on DST transitions. - Bug in binary operator method (eg .mul()) alignment with integer levels. - Bug in boxplot, scatter and hexbin plot may show an unnecessary warning - Bug in subplot with layout kw may show unnecessary warning - Bug in using grouper functions that need passed thru arguments (e.g. axis), when using wrapped function (e.g. fillna), - DataFrame now properly supports simultaneous copy and dtype arguments in constructor - Bug in read_csv when using skiprows on a file with CR line endings with the c engine. - isnull now detects NaT in PeriodIndex - Bug in groupby .nth() with a multiple column groupby - Bug in DataFrame.where and Series.where coerce numerics to string incorrectly - Bug in DataFrame.where and Series.where raise ValueError when string list-like is passed. - Accessing Series.str methods on with non-string values now raises TypeError instead of producing incorrect results - Bug in DatetimeIndex.__contains__ when index has duplicates and is not monotonic increasing - Fixed division by zero error for Series.kurt() when all values are equal - Fixed issue in the xlsxwriter engine where it added a default \'General\' format to cells if no other format wass applied. This prevented other row or column formatting being applied. - Fixes issue with index_col=False when usecols is also specified in read_csv. - Bug where wide_to_long would modify the input stubnames list - Bug in to_sql not storing float64 values using double precision. - SparseSeries and SparsePanel now accept zero argument constructors (same as their non-sparse counterparts). - Regression in merging Categorical and object dtypes - Bug in read_csv with buffer overflows with certain malformed input files - Bug in groupby MultiIndex with missing pair - Fixed bug in Series.groupby where grouping on MultiIndex levels would ignore the sort argument - Fix bug in DataFrame.Groupby where sort=False is ignored in the case of Categorical columns. - Fixed bug with reading CSV files from Amazon S3 on python 3 raising a TypeError - Bug in the Google BigQuery reader where the \'jobComplete\' key may be present but False in the query results - Bug in Series.values_counts with excluding NaN for categorical type Series with dropna=True - Fixed mising numeric_only option for DataFrame.std/var/sem - Support constructing Panel or Panel4D with scalar data - Series text representation disconnected from `max_rows`/`max_columns`. - Series number formatting inconsistent when truncated. - A Spurious SettingWithCopy Warning was generated when setting a new item in a frame in some cases * Mon Jan 12 2015 toddrme2178AATTgmail.com- update to version 0.15.2: * API changes: - Indexing in MultiIndex beyond lex-sort depth is now supported, though a lexically sorted index will have a better performance. (GH2646) - Bug in unique of Series with category dtype, which returned all categories regardless whether they were \"used\" or not (see GH8559 for the discussion). Previous behaviour was to return all categories. - Series.all and Series.any now support the level and skipna parameters. Series.all, Series.any, Index.all, and Index.any no longer support the out and keepdims parameters, which existed for compatibility with ndarray. Various index types no longer support the all and any aggregation functions and will now raise TypeError. (GH8302). - Allow equality comparisons of Series with a categorical dtype and object dtype; previously these would raise TypeError (GH8938) - Bug in NDFrame: conflicting attribute/column names now behave consistently between getting and setting. Previously, when both a column and attribute named y existed, data.y would return the attribute, while data.y = z would update the column (GH8994) - Timestamp(\'now\') is now equivalent to Timestamp.now() in that it returns the local time rather than UTC. Also, Timestamp(\'today\') is now equivalent to Timestamp.today() and both have tz as a possible argument. (GH9000) - Fix negative step support for label-based slices (GH8753) * Enhancements: - Added ability to export Categorical data to Stata (GH8633). See here for limitations of categorical variables exported to Stata data files. - Added flag order_categoricals to StataReader and read_stata to select whether to order imported categorical data (GH8836). See here for more information on importing categorical variables from Stata data files. - Added ability to export Categorical data to to/from HDF5 (GH7621). Queries work the same as if it was an object array. However, the category dtyped data is stored in a more efficient manner. See here for an example and caveats w.r.t. prior versions of pandas. - Added support for searchsorted() on Categorical class (GH8420). - Added the ability to specify the SQL type of columns when writing a DataFrame to a database (GH8778). For example, specifying to use the sqlalchemy String type instead of the default Text type for string columns. - Series.all and Series.any now support the level and skipna parameters (GH8302). - Panel now supports the all and any aggregation functions. (GH8302). - Added support for utcfromtimestamp(), fromtimestamp(), and combine() on Timestamp class (GH5351). - Added Google Analytics (pandas.io.ga) basic documentation (GH8835). - Timedelta arithmetic returns NotImplemented in unknown cases, allowing extensions by custom classes (GH8813). - Timedelta now supports arithemtic with numpy.ndarray objects of the appropriate dtype (numpy 1.8 or newer only) (GH8884). - Added Timedelta.to_timedelta64() method to the public API (GH8884). - Added gbq.generate_bq_schema() function to the gbq module (GH8325). - Series now works with map objects the same way as generators (GH8909). - Added context manager to HDFStore for automatic closing (GH8791). - to_datetime gains an exact keyword to allow for a format to not require an exact match for a provided format string (if its False). exact defaults to True (meaning that exact matching is still the default) (GH8904) - Added axvlines boolean option to parallel_coordinates plot function, determines whether vertical lines will be printed, default is True - Added ability to read table footers to read_html (GH8552). - to_sql now infers datatypes of non-NA values for columns that contain NA values and have dtype object (GH8778). * Performance: - Reduce memory usage when skiprows is an integer in read_csv (GH8681) - Performance boost for to_datetime conversions with a passed format=, and the exact=False (GH8904) * Bug fixes: - Bug in concat of Series with category dtype which were coercing to object. (GH8641) - Bug in Timestamp-Timestamp not returning a Timedelta type and datelike-datelike ops with timezones (GH8865) - Made consistent a timezone mismatch exception (either tz operated with None or incompatible timezone), will now return TypeError rather than ValueError (a couple of edge cases only), (GH8865) - Bug in using a pd.Grouper(key=...) with no level/axis or level only (GH8795, GH8866) - Report a TypeError when invalid/no paramaters are passed in a groupby (GH8015) - Bug in packaging pandas with py2app/cx_Freeze (GH8602, GH8831) - Bug in groupby signatures that didn’t include *args or * *kwargs (GH8733). - io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783). - Unclear error message in csv parsing when passing dtype and names and the parsed data is a different data type (GH8833) - Bug in slicing a multi-index with an empty list and at least one boolean indexer (GH8781) - io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo (GH8761). - Timedelta kwargs may now be numpy ints and floats (GH8757). - Fixed several outstanding bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436). - sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697) - slice string method now takes step into account (GH8754) - Bug in BlockManager where setting values with different type would break block integrity (GH8850) - Bug in DatetimeIndex when using time object as key (GH8667) - Bug in merge where how=\'left\' and sort=False would not preserve left frame order (GH7331) - Bug in MultiIndex.reindex where reindexing at level would not reorder labels (GH4088) - Bug in certain operations with dateutil timezones, manifesting with dateutil 2.3 (GH8639) - Regression in DatetimeIndex iteration with a Fixed/Local offset timezone (GH8890) - Bug in to_datetime when parsing a nanoseconds using the %f format (GH8989) - io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783). - Fix: The font size was only set on x axis if vertical or the y axis if horizontal. (GH8765) - Fixed division by 0 when reading big csv files in python 3 (GH8621) - Bug in outputing a Multindex with to_html,index=False which would add an extra column (GH8452) - Imported categorical variables from Stata files retain the ordinal information in the underlying data (GH8836). - Defined .size attribute across NDFrame objects to provide compat with numpy >= 1.9.1; buggy with np.array_split (GH8846) - Skip testing of histogram plots for matplotlib <= 1.2 (GH8648). - Bug where get_data_google returned object dtypes (GH3995) - Bug in DataFrame.stack(..., dropna=False) when the DataFrame’s columns is a MultiIndex whose labels do not reference all its levels. (GH8844) - Bug in that Option context applied on __enter__ (GH8514) - Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calculated from the start of the range (GH8683) - Bug where DataFrame.plot(kind=\'scatter\') fails when checking if an np.array is in the DataFrame (GH8852) - Bug in pd.infer_freq/DataFrame.inferred_freq that prevented proper sub-daily frequency inference when the index contained DST days (GH8772). - Bug where index name was still used when plotting a series with use_index=False (GH8558). - Bugs when trying to stack multiple columns, when some (or all) of the level names are numbers (GH8584). - Bug in MultiIndex where __contains__ returns wrong result if index is not lexically sorted or unique (GH7724) - BUG CSV: fix problem with trailing whitespace in skipped rows, (GH8679), (GH8661), (GH8983) - Regression in Timestamp does not parse ‘Z’ zone designator for UTC (GH8771) - Bug in StataWriter the produces writes strings with 244 characters irrespective of actual size (GH8969) - Fixed ValueError raised by cummin/cummax when datetime64 Series contains NaT. (GH8965) - Bug in Datareader returns object dtype if there are missing values (GH8980) - Bug in plotting if sharex was enabled and index was a timeseries, would show labels on multiple axes (GH3964). - Bug where passing a unit to the TimedeltaIndex constructor applied the to nano-second conversion twice. (GH9011). - Bug in plotting of a period-like array (GH9012)- Update copyright year * Sun Nov 09 2014 toddrme2178AATTgmail.com- Updated to version 0.15.1: + API changes - Represent ``MultiIndex`` labels with a dtype that utilizes memory based on the level size. - ``groupby`` with ``as_index=False`` will not add erroneous extra columns to result (:issue:`8582`): - ``groupby`` will not erroneously exclude columns if the column name conflics with the grouper name (:issue:`8112`): - ``concat`` permits a wider variety of iterables of pandas objects to be passed as the first parameter (:issue:`8645`): - ``s.dt.hour`` and other ``.dt`` accessors will now return ``np.nan`` for missing values (rather than previously -1), (:issue:`8689`) - support for slicing with monotonic decreasing indexes, even if ``start`` or ``stop`` is not found in the index (:issue:`7860`): - added Index properties `is_monotonic_increasing` and `is_monotonic_decreasing` (:issue:`8680`). - pandas now also registers the ``datetime64`` dtype in matplotlib\'s units registry to plot such values as datetimes. + Enhancements - Added option to select columns when importing Stata files (:issue:`7935`) - Qualify memory usage in ``DataFrame.info()`` by adding ``+`` if it is a lower bound (:issue:`8578`) - Raise errors in certain aggregation cases where an argument such as ``numeric_only`` is not handled (:issue:`8592`). - Added support for 3-character ISO and non-standard country codes in :func:``io.wb.download()`` (:issue:`8482`) - :ref:`World Bank data requests ` now will warn/raise based on an ``errors`` argument, as well as a list of hard-coded country codes and the World Bank\'s JSON response. - Added option to ``Series.str.split()`` to return a ``DataFrame`` rather than a ``Series`` (:issue:`8428`) - Added option to ``df.info(null_counts=None|True|False)`` to override the default display options and force showing of the null-counts (:issue:`8701`) + Bug Fixes - Bug in unpickling of a ``CustomBusinessDay`` object (:issue:`8591`) - Bug in coercing ``Categorical`` to a records array, e.g. ``df.to_records()`` (:issue:`8626`) - Bug in ``Categorical`` not created properly with ``Series.to_frame()`` (:issue:`8626`) - Bug in coercing in astype of a ``Categorical`` of a passed ``pd.Categorical`` (this now raises ``TypeError`` correctly), (:issue:`8626`) - Bug in ``cut``/``qcut`` when using ``Series`` and ``retbins=True`` (:issue:`8589`) - Bug in writing Categorical columns to an SQL database with ``to_sql`` (:issue:`8624`). - Bug in comparing ``Categorical`` of datetime raising when being compared to a scalar datetime (:issue:`8687`) - Bug in selecting from a ``Categorical`` with ``.iloc`` (:issue:`8623`) - Bug in groupby-transform with a Categorical (:issue:`8623`) - Bug in duplicated/drop_duplicates with a Categorical (:issue:`8623`) - Bug in ``Categorical`` reflected comparison operator raising if the first argument was a numpy array scalar (e.g. np.int64) (:issue:`8658`) - Bug in Panel indexing with a list-like (:issue:`8710`) - Compat issue is ``DataFrame.dtypes`` when ``options.mode.use_inf_as_null`` is True (:issue:`8722`) - Bug in ``read_csv``, ``dialect`` parameter would not take a string (:issue: `8703`) - Bug in slicing a multi-index level with an empty-list (:issue:`8737`) - Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (:issue:`8608`) - Bug in setitem with empty indexer and unwanted coercion of dtypes (:issue:`8669`) - Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (:issue:`8607`) - Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes (:issue:`8680`). - Bug when indexing a Float64Index with ``np.nan`` on numpy 1.7 (:issue:`8980`). - Fix ``shape`` attribute for ``MultiIndex`` (:issue:`8609`) - Bug in ``GroupBy`` where a name conflict between the grouper and columns would break ``groupby`` operations (:issue:`7115`, :issue:`8112`) - Fixed a bug where plotting a column ``y`` and specifying a label would mutate the index name of the original DataFrame (:issue:`8494`) - Fix regression in plotting of a DatetimeIndex directly with matplotlib (:issue:`8614`). - Bug in ``date_range`` where partially-specified dates would incorporate current date (:issue:`6961`) - Bug in Setting by indexer to a scalar value with a mixed-dtype `Panel4d` was failing (:issue:`8702`) - Bug where ``DataReader``\'s would fail if one of the symbols passed was invalid. Now returns data for valid symbols and np.nan for invalid (:issue:`8494`) - Bug in ``get_quote_yahoo`` that wouldn\'t allow non-float return values (:issue:`5229`). * Mon Oct 20 2014 toddrme2178AATTgmail.com- Update to 0.15.0, highlights: - Drop support for numpy < 1.7.0 - The Categorical type was integrated as a first-class pandas type - New scalar type Timedelta, and a new index type TimedeltaIndex - New DataFrame default display for df.info() to include memory usage - New datetimelike properties accessor .dt for Series - Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing - Split out string methods documentation into Working with Text Data - read_csv will now by default ignore blank lines when parsing - API change in using Indexes in set operations - Internal refactoring of the Index class to no longer sub-class ndarray - dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1- Update minimum dependency versions of python-numpy, python-tables, and python-numexpr | |
|
|