Name : R-TFRE
| |
Version : 0.1.0
| Vendor : obs://build_opensuse_org/devel:languages:R
|
Release : lp155.1.3
| Date : 2024-09-10 18:23:16
|
Group : Development/Libraries/Other
| Source RPM : R-TFRE-0.1.0-lp155.1.3.src.rpm
|
Size : 0.17 MB
| |
Packager : https://www_suse_com/
| |
Summary : A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression
|
Description :
Provide functions to estimate the coefficients in high-dimensional linear regressions via a tuning-free and robust approach. The method was published in Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), \"A Tuning-free Robust and Efficient Approach to High-dimensional Regression\", Journal of the American Statistical Association, 115:532, 1700-1714(JASA’s discussion paper), < doi:10.1080/01621459.2020.1840989>. See also Wang, L., Peng, B., Bradic, J., Li, R. and Wu, Y. (2020), \"Rejoinder to “A tuning-free robust and efficient approach to high-dimensional regression\". Journal of the American Statistical Association, 115, 1726-1729, < doi:10.1080/01621459.2020.1843865> Peng, B. and Wang, L. (2015), \"An Iterative Coordinate Descent Algorithm for High-Dimensional Nonconvex Penalized Quantile Regression\", Journal of Computational and Graphical Statistics, 24:3, 676-694, < doi:10.1080/10618600.2014.913516> Clémençon, S., Colin, I., and Bellet, A. (2016), \"Scaling-up empirical risk minimization: optimization of incomplete u-statistics\", The Journal of Machine Learning Research, 17(1):2682–2717; Fan, J. and Li, R. (2001), \"Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties\", Journal of the American Statistical Association, 96:456, 1348-1360, < doi:10.1198/016214501753382273>.
|
RPM found in directory: /packages/linux-pbone/ftp5.gwdg.de/pub/opensuse/repositories/devel:/languages:/R:/autoCRAN/15.5/x86_64 |