SEARCH
NEW RPMS
DIRECTORIES
ABOUT
FAQ
VARIOUS
BLOG

 
 

R-appnn rpm build for : OpenSuSE. For other distributions click R-appnn.

Name : R-appnn
Version : 1.0.0 Vendor : obs://build_opensuse_org/devel:languages:R
Release : lp156.2.1 Date : 2024-06-24 14:01:33
Group : Development/Libraries/Other Source RPM : R-appnn-1.0.0-lp156.2.1.src.rpm
Size : 0.05 MB
Packager : https://www_suse_com/
Summary : Amyloid Propensity Prediction Neural Network
Description :
Amyloid propensity prediction neural network (APPNN) is an
amyloidogenicity propensity predictor based on a machine learning
approach through recursive feature selection and feed-forward neural
networks, taking advantage of newly published sequences with
experimental, in vitro, evidence of amyloid formation.

RPM found in directory: /packages/linux-pbone/ftp5.gwdg.de/pub/opensuse/repositories/devel:/languages:/R:/autoCRAN/15.6/x86_64

Content of RPM  Provides Requires

Download
ftp.icm.edu.pl  R-appnn-1.0.0-lp156.2.1.x86_64.rpm
     

Provides :
R-appnn
R-appnn(x86-64)

Requires :
R-base
rpmlib(CompressedFileNames) <= 3.0.4-1
rpmlib(FileDigests) <= 4.6.0-1
rpmlib(PayloadFilesHavePrefix) <= 4.0-1
rpmlib(PayloadIsXz) <= 5.2-1


Content of RPM :
/usr/lib64/R/library/appnn
/usr/lib64/R/library/appnn/DESCRIPTION
/usr/lib64/R/library/appnn/INDEX
/usr/lib64/R/library/appnn/Meta
/usr/lib64/R/library/appnn/Meta/Rd.rds
/usr/lib64/R/library/appnn/Meta/features.rds
/usr/lib64/R/library/appnn/Meta/hsearch.rds
/usr/lib64/R/library/appnn/Meta/links.rds
/usr/lib64/R/library/appnn/Meta/nsInfo.rds
/usr/lib64/R/library/appnn/Meta/package.rds
/usr/lib64/R/library/appnn/NAMESPACE
/usr/lib64/R/library/appnn/R
/usr/lib64/R/library/appnn/R/appnn
/usr/lib64/R/library/appnn/R/appnn.rdb
/usr/lib64/R/library/appnn/R/appnn.rdx
/usr/lib64/R/library/appnn/R/sysdata.rdb
/usr/lib64/R/library/appnn/R/sysdata.rdx
/usr/lib64/R/library/appnn/help
/usr/lib64/R/library/appnn/help/AnIndex
/usr/lib64/R/library/appnn/help/aliases.rds
/usr/lib64/R/library/appnn/help/appnn.rdb
/usr/lib64/R/library/appnn/help/appnn.rdx
/usr/lib64/R/library/appnn/help/paths.rds
/usr/lib64/R/library/appnn/html
/usr/lib64/R/library/appnn/html/00Index.html
/usr/lib64/R/library/appnn/html/R.css

 
ICM