Name : R-fsMTS
| |
Version : 0.1.7
| Vendor : obs://build_opensuse_org/devel:languages:R
|
Release : lp153.13.4
| Date : 2024-06-14 12:10:19
|
Group : Development/Libraries/Other
| Source RPM : R-fsMTS-0.1.7-lp153.13.4.src.rpm
|
Size : 2.26 MB
| |
Packager : (none)
| |
Summary : Feature Selection for Multivariate Time Series
|
Description :
Implements feature selection routines for multivariate time series (MTS). The list of implemented algorithms includes: own lags (independent MTS components), distance-based (using external structure, e.g. Pfeifer and Deutsch (1980) < doi:10.2307/1268381>), cross-correlation (see Schelter et al. (2006, ISBN:9783527406234)), graphical LASSO (see Haworth and Cheng (2014) < https://www.gla.ac.uk/media/Media_401739_smxx.pdf>), random forest (see Pavlyuk (2020) \"Random Forest Variable Selection for Sparse Vector Autoregressive Models\" in Contributions to Statistics, in production), least angle regression (see Gelper and Croux (2008) < https://lirias.kuleuven.be/retrieve/16024>), mutual information (see Schelter et al. (2006, ISBN:9783527406234), Liu et al. (2016) < doi:10.1109/ChiCC.2016.7554480>), and partial spectral coherence (see Davis et al.(2016) < doi:10.1080/10618600.2015.1092978>). In addition, the package implements functions for ensemble feature selection (using feature ranking and majority voting). The package is implemented within Dmitry Pavlyuk\'s research project No. 1.1.1.2/VIAA/1/16/112 \"Spatiotemporal urban traffic modelling using big data\".
|
RPM found in directory: /packages/linux-pbone/ftp5.gwdg.de/pub/opensuse/repositories/devel:/languages:/R:/autoCRAN/openSUSE_Leap_15.3/x86_64 |